Antenna Placement Featured

Introduction to FDTD Electromagnetic Simulation for Automotive Radar

Introduction to FDTD Electromagnetic Simulation for Automotive Radar

Electromagnetic simulation has been used by RF engineers for many years to aid the design of automotive radar sensors, but the increasing demands of advanced driver assistance systems (ADAS) are changing the methods used.  This paper introduces FDTD’s advantages for automotive radar circuit and systems level designers, including simulation of very large problems, more efficient memory requirements, and the ability to reveal sources of coupling.

Benefits of Time-Domain Electromagnetic Simulation for Automotive Radar

Benefits of Time-Domain Electromagnetic Simulation for Automotive Radar

This whitepaper demonstrates how XFdtd's time-domain approach enables rapid development by allowing engineers to determine the performance of a fully detailed sensor model installed behind a piece of fascia without needing to build prototypes and run tests in an anechoic chamber. The analysis of a 25 GHz sensor frames the discussion.

Comparison of Indoor Propagation Modeling of WiFi Coverage Using Wireless InSite and Measurements

Comparison of Indoor Propagation Modeling of WiFi Coverage Using Wireless InSite and Measurements

This presentation demonstrates how the 3D ray tracing code in Wireless InSite can accurately predict received power coverage even in a multi-room environment containing many walls and different materials types. In order to verify the accuracy of the code, the floor plan of Remcom’s business offices was modeled in the software with a WiFi antenna and a third party tool was used to create a coverage plot of the received power throughout several of the suites.

Using Simulation to Optimize Safety, Performance, and Cost Savings When Integrating an Antenna Onto a Platform

Using Simulation to Optimize Safety, Performance, and Cost Savings When Integrating an Antenna Onto a Platform

Successful integration of an antenna onto a vehicle platform poses many challenges.  This paper provides a variety of examples of how modeling and simulation can be used to analyze antenna performance, identify problems, and evaluate potential solutions.