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Introduction to Auto Radar Simulation
Significant innovation is taking place in automotive industry around capabilities 
for advanced driver assistance systems (ADAS)[1]-[2].
Radar sensors operating at millimeter wave bands are a key technology and 
require new modeling and simulation tools to predict their performance in driving 
environments.
Simulation of radar in realistic automotive scenarios poses several challenges:

• Near-field conditions that invalidate traditional RCS concepts
• Densely-faceted vehicle models too complex for traditional propagation ray-tracers
• Complex multipath from roadside structures (guard rails, signs, parked vehicles, etc.)
• Dynamic scenarios with multiple vehicles in motion

This presentation demonstrates a new modeling and simulation capability that 
addresses these challenges, combining ray-tracing and scattering simulations 
from Remcom’s WaveFarer® with chirp Doppler analysis algorithms to assess 
radar performance for drive scenario simulations.
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Key Elements of the Solution
Physical Optics (PO) [3] for backscatter

• Surface integration technique accurately predicts backscatter from highly-
faceted vehicle models in full, 4-π steradians

• Does not make far-field assumptions, allowing for spherical wave incidence
Method of Equivalent Currents (MEC) [4] for edge effects

• Specially derived for Remcom’s PO technique to find electric and magnetic 
line currents

• Included as line integrals to supplement PO surface integral 
Geometric Optics and Uniform Theory of Diffraction (GO/UTD) [4]-[5]

• Used to propagate to scattering surfaces to provide incident electric and 
magnetic fields for surface integration

• Used to propagate back to ensure reciprocity
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Ray-tracing Methods
Basic ray-tracing approach:

• Shooting and bouncing ray (SBR) 
method used to find propagation paths to 
scattering objects (vehicles & clutter)

• Augmented with algorithms to ensure 
that all paths illuminate every facet of 
scattering targets (critical enhancement)

• Paths corrected to precise geometric 
path to all integration points, maintaining 
mag, phase, polarization and time of 
arrival

Multipath is captured on the way to 
and from scattering objects.
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Field Calculations
• GO/UTD: interactions with environment to compute incident fields and 

multipath to/from scattering integration surfaces
• Includes multipath within scattering objects, such as corner reflectors

• PO/MEC used to compute backscatter from each surface integration point
• At a high level, each facet and path to antenna has its own generalized Green’s function:

where J and M are scattered electric and magnetic current densities, and the exponential 
term gives phase variations on the facet surface

• Total returned power is computed through complex summation of all paths 
(reflected, diffracted, and scattered), including phase
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Applying to Auto-Radar
Key characteristics of radar

• Millimeter waves (e.g., 76-81 GHz)
• Antenna radiation patterns (far zone 

assumptions reasonable)
• Pulsed or chirped waveform

Interactions with car and environment
• Near-zone scattering (vehicle is large 

compared to wavelength and distance)
• PO surface integration must include spherical 

and diffracted wave fronts
• Also phase, polarization, range dependence
• Offsets for antenna arrays also critical

• Multipath with ground and other 
structures both to and from targets

Ground Bounce Multipath Has 
Significant Effect on Received Power
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Drive Scenarios Modeling
Drive scenarios typically include 
roadside clutter, other structures

• Examples: guard rails, street sign
• Maybe buildings, walls, poles

Complex impulse response (CIR) 
shows mag and phase of returns 
vs. time of arrival

• Figure compares (a) Car alone 
vs. (b) car with ground & clutter

• Guard rail posts & sign add large 
number of secondary returns
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Analysis Using Chirped Waveforms
Developed scripts and post-processing 
in MATLAB® [9] for range & doppler 
analysis
Waveform: FMCW [8](chirped 
waveform), defined by:

• Lower & upper frequency (f1, f2)
• Chirp duration T
• Chirp rate k=(f2-f1) / T
• Optional reset time between chirps, Tr
• Number of chirps/frame, N

Simulated chirp frames at several time 
steps for two scenarios

Frequency

T0

f1

f2
Tr

Time

Chirp 1    Chirp 2 … Chirp N

Request a demonstration of WaveFarer here.

https://www2.remcom.com/demonstration-request-wavefarer-chirp-doppler-presentation
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Derive Broadband CIR
Derive broadband waveform by 
convolving CIRs with transmitted 
waveform

• Adjust phases to account for transmit 
frequency and time of arrival at time of 
transmission for each CIR return

• Generates time-sampled received 
voltage waveform

Assumptions
• Non-dispersion: in this study, waveform 

was assumed to not change shape due 
to interactions on way from Tx to Rx

• Target object speeds: objects are 
moving slow compared to light (each 
chirp sim is a static snapshot)

Complex Impulse Response

Time of Arrival(ns)

Po
w

er
 (d

Bm
)

Delays between transmitted 
& received copies of signal

..

Scattering from multiple 
objects/features creates 
multiple returned copies 
of signal

Fr
eq

ue
nc

y 
(G

H
z)

Time (ns)



© Remcom Inc. All rights reserved. 

Chirp Post-Processing
The critical simulation output is CIR (path mag & phase binned by time of arrival)
Scripts were developed in MATLAB to perform these signal processing steps 
using these outputs:

1. For each path bin, phase of received signal is determined from CIR and the transmitted 
chirp waveform

2. Received signal is mixed with transmitted signal [10]; phase difference is given by

3. Time-dependent term results in beat frequency related to range of interaction

4. This is performed for each path, and results are combined in manner equivalent to a 
time-domain convolution of waveform and CIRs

DFTs are then used to determine range and Doppler (next slide)
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Chirp Post-Processing (continued)
DFT of combined mixed-down signal from all paths (I&Q) provides power vs. 
frequency, which can be converted to power vs. range.
DFT across chirps in a frame then determines the Doppler from path phase shifts 
between chirps as the vehicles move through the scene.

Guard Rail
Posts

Vehicle
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Scenario 1: Vehicle Braking
First scenario involved radar host 
closing on a braking vehicle

• Used chirp waveform, 51 chirps / frame

Range-doppler calculated for 6 points 
in time over 2.5 second duration

• For each, simulated returns for 51 chirps 
(a single frame)

Category Parameter Value
Chirp Waveform Frequency 77 – 81 GHz

Modulation Sawtooth
Chirp Duration 20 us
Chirps / Frame 51

Motion: Host Velocity 20 m/s
Braking Vehicle Initial Velocity 15 m/s

Deceleration 4 m/s2

TABLE I. PARAMETERS OF BRAKING SCENARIO

Vehicle
Braking

CLICK to see video clip

https://youtu.be/ZQwOAh-9ODU
https://youtu.be/ZQwOAh-9ODU
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DFTs of I&Q Determine Range-Doppler
DFT of Beat Frequencies Determines

Return vs. Range
DFT across Chirps in Frame Determines 

Range-Doppler
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CLICK to see video clip

https://youtu.be/ZQwOAh-9ODU
https://youtu.be/ZQwOAh-9ODU
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Scenario 1 (Braking): Range Doppler
Results show returns from guard rail posts and vehicle at 1-second intervals

• Vehicle appears at expected ranges
• Relative velocity starts 5 m/s slower; decelerates to 9 m/s and 13 m/s slower as expected
• Guard rails close at full velocity, but slide toward 0 and then negative as car passes them

Guard Rail
Posts

Braking
Car

Braking
Car Braking

Car
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Scenario 2: Lane Change Reveals Braking Vehicle
In 2nd scenario, braking vehicle is 
obstructed at first
Then blocking vehicle changes lanes, 
revealing braking car to radar
Scenario parameters:

• Obstructing vehicle matches radar host 
forward velocity of 20 m/s

• Changes lane along curved path to left
• All other parameters are the same as 

first scenario

Vehicle
Braking

CLICK to see video clip

https://youtu.be/b696mFZ9TaY
https://youtu.be/b696mFZ9TaY
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Scenario 2 Returns vs. Range & Range-Doppler
DFT of Beat Frequencies Determines

Return vs. Range
DFT across Chirps in Frame Determines 

Range-Doppler
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CLICK to see video clip

https://youtu.be/b696mFZ9TaY
https://youtu.be/b696mFZ9TaY
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Scenario 2 (Reveal): Range Doppler
Results show returns from vehicles and clutter at 1-second intervals

• Braking vehicle is obscured at start (approx. 20 dB below blocking vehicle)
• Begins to emerge at 1-second point (approx. 8.5 dB down), and fully emerges by end
• Relative positions, velocities, and deceleration for vehicles match expected values

Braking
car partially 
obscured

Braking
car less 

obscured
Braking
car fully 
revealed
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Summary
We have presented a unique solution for predicting radar returns for automotive 
radar drive scenario simulations.

• Based on Remcom’s WaveFarer®, combines ray-tracing and radar scattering methods with 
techniques specifically designed to handle near-zone conditions, dense multipath, and 
scattering environments found in typical drive scenarios

• Augmented with post-processing analysis scripts developed in MATLAB to perform range-
Doppler analysis for chirp waveforms

The methods were applied to simulate two drive scenarios for comparison. 
• In both, the predicted range-Doppler results consistently match the simulated positions and 

velocities of vehicles and roadside clutter.
• The second scenario demonstrated how an obstructing vehicle might reduce the ability of a 

radar to observe a braking car in the front.

Successful results verify ability to simulate chirp Doppler for cases relevant to 
automotive radar, demonstrating a predictive simulation capability that can be 
used to assess concepts and alternatives during the radar design process.
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Contact Remcom
Request a demonstration, pricing, or free trial:
https://www.remcom.com/contact

Subscribe to the monthly newsletter: 
https://www.remcom.com/customer-communications

Toll Free: 1-888-773-6266 (US/Canada)
Tel: 1-814-861-1299
Email: sales@remcom.com
www.remcom.com

Request a demonstration 
of WaveFarer here.

https://www.remcom.com/contact
https://www.remcom.com/customer-communications
mailto:sales@remcom.com
http://www.remcom.com/
https://www2.remcom.com/demonstration-request-wavefarer-chirp-doppler-presentation
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