Comparison of Indoor Propagation Modeling of WiFi Coverage Using Wireless InSite® and Measurements

Overview

- Discuss validation of propagation modeling through the use of laptop measurements
 - In this case the scenario is focused on WiFi
- Present the measurement procedure
- Discuss and compare results
- Conclusion

WiFi Measurements

B = WiFi Phone D= WiFi Laptop

http://www.countrymilewifi.com/what_is_wifi.aspx

- WiFi common in every day life
 - Homes, offices, coffee shops
 - Cell phones, tablets, computers, game consoles
 - Home automation
- Allows for easy scenario evaluation
 - Indoor, outdoor, indoor-to-outdoor
- Requirements
 - A device that sends a signal (router)
 - A device to detect the signal (laptop)
 - Some overlay or map to coordinate results

WiFi Background*

- Laptops are not designed to produce accurate power measurements
 - Provide feedback to user to determine if signal level is strong enough to transmit/receive signal
- Chipset maps received power signal to integer RSSI value between 0 and 256
 - Standard does not require manufacturers to use entire span
 - Some may use 0 to 30
 - Others may use 0 to 100
 - Sensitivity will therefore vary depending manufacturer's choice
 - A one integer change in received power could be 3 dBm in one chipset and 6 dBm in another
- There is potential for multiple values to be mapped to a single value

Setup 1: Physical Measurements

- Equipment
 - Linksys WRT54 GS Wireless G router [1]
 - HP ProBook [2]
 - Acer Aspire 5742 [3]

- Software
 - Ekahau Heatmapper software [4]
 - Not associated with Remcom
- Location
 - Office building

Ekahau Heatmapper Software

- The user provides a picture of their floorplan or layout
- The user clicks on the map at their current location which records the received power as detected by the computer's WiFi card
- As they walk, they continue to click on their position on the map
- When they are done, the software generates coverage zones based on measurement locations and power roll off
 - Keep in mind this software has no concept of the floorplan, only where you clicked

Office Building Floorplan

3D View of Office Floorplan

Setup

- Transmitter: Linksys WRT54 GS Wireless G router
- Receiver: HP ProBook
- Procedure:
 - Import map into software
 - Slowly walk around office area clicking periodically to record values, avoiding obstacles
- All detected WiFi signals will be recorded along with approximate location of source
 - Icons showing extraneous detected router locations cannot be turned off in software

Measured Results: Ekahau Heatmapper

Setup 2: Simulation Setup

- Equipment
 - Custom computer from Exxact Corporation
 - Quad core i7 cpu
 - 12 GB CPU RAM

- Software
 - Wireless InSite propagation software from Remcom

Wireless InSite Software

- Suite of propagation models based on ray tracing, FDTD, or empirical concepts
- 3D ray tracer uses shooting and bouncing ray method
 - User has control over number of transmissions, reflections, and diffractions in the scene
 - Interactions use material properties and UTD/GTD theory to accurately determine power, phase, and angle of path after interaction
- User creates scene via importation of CAD model or through the GUI
 - Pictures can be used to quickly trace out the scene
 - May include terrain, buildings, floorplan, foliage

Wireless InSite Software (cont'd)

- Antennas
 - Patterns can be imported from other software or created with built in numeric models
- Transmitters and Receivers are then placed in the scene and oriented appropriately
- A grid of receivers was used to capture data throughout the offices

Simulation Setup

- Propagation Model: Full 3D
- Transmitter: Isotropic
- Receivers: Isotropic
- Red Dots: Grids of receivers
 - Grids have 0.08 m spacing
 - Chosen for high resolution images
 - 42,387 total receiver locations
- Settings:
 - 6 Reflections
 - 6 Transmissions
 - 1 Diffraction

Simulated Results Full 3D

Comparison

- Similarities
 - Color scales are matched
 - Trends are captured
 - Affects of walls similar
 - Attenuation with distance similar
- Differences
 - Simulation shows more energy further out (lower rooms)
 - 45° beam in predicted results
 - Artifact of discretized color scale
 - Only 2 dBm different then nearest neighbor

Considerations

- The color scale is only valid where measurements were taken
 - i.e. along the green path
- Color scale is discretized
- The exact values from laptop card were not recorded
 - The resulting color map is the only available output
- An estimated attenuation is applied to the data outside of the measured area

Examining the Actual Route

- Picture from Ekahau Heatmapper overlaid InSite Floor plan
- Exact route traced as route of receivers
 - 0.5 m spaced isotropic receivers (red dots on picture)
 - 250 receiver points
- We don't have exact measured values for comparison, only ranges

Measured Values Along Route

Note 1: The red dots correspond to measured data locations Note 2: Bounds taken from Ekahau Heatmapper coverage plot

Measured Values Along Route

- Most of the 250 calculated points are within bounds from Heatmapper software
- 68 measured points total were used
- Red arrows indicate locations where calculated values differ from measured color ranges
 - 10 points outside of range
 - All 10 within 6 dBm of measured range

Initial Value Evaluation

- The Heatmapper results show a -48 dBm lower bound
- Calculated values go down to -39 dBm
- Distance along path for the -48 dBm value was suspiciously long
 - HP ProBook
 - Violated Friis transmission equation
- Acer laptop showed higher power closer to transmitter
 - Verified Wireless Insite values were valid
 - Points to HP ProBook having a lower bound of -48 dBm
 - Works for intended use

Conclusion

- Simple measurement techniques can be used to validate complex propagation models in Wireless InSite
 - Focused on first cut evaluations and validation on relatively simple scenarios
 - Similar techniques can be applied to more complex scenarios
 - Multiple floors
 - Directional Antennas
 - Not intended to replace more accurate measurement techniques
- Benefits of simulation include:
 - Cheaper then full measurement campaigns due to lower personnel and equipment costs
 - Faster then measurement campaigns
 - Allows multiple configuration analysis
 - Shows full coverage, not discrete points
 - Find shadow regions prior to installation of equipment
 - Test antenna patterns in scenario to determine effectiveness

Conclusion

- Overall accuracy good
- Coverage plots compared favorably between calculated and measured values
 - Same trends in both data sets
- Route analysis determined:
 - Most of the 250 calculated points within 10 dBm ranges created by Ekahau Heatmapper software
 - Looking at 68 locations corresponding to where data was measured
 - Outlying points still within 6 dBm of the measured range
- Close to transmitter low power measurements traced back to the dynamic range of laptop WiFi chipset

References

- 1. http://support.linksys.com/en-us/support/routers/WRT54GS
- 2. http://h20566.www2.hp.com/portal/site/hpsc/public/psi/manualsResults?sp4ts.oid=506 0880&ac.admitted=1400166734614.876444892.199480143
- 3. http://www.laptopmag.com/review/laptops/acer-aspire-5742.aspx
- 4. www.ekahau.com
- 5. Bardwell, Joshua. "You Believe you Understand What You Think I Said...The Truth about 802.11 Signal and Noise Metrics". Connect802 Corporation. 2004. Web. http://n-cg.net/ncgpdf/WiFi_SignalValues.pdf>.

