

XFdtd® EM Simulation Software
MPI - GPU Acceleration Performance Report

XFdtd supports simulations with virtually an unlimited number of cells -- limits are

introduced only by the available hardware and its scalability. To make such large

problems truly tractable, the simulation must be able to utilize high-performance

hardware on multiple physical nodes. Remcom has long been a leader in both MPI and

GPU technologies. XFdtd brings these two technologies together to provide

unparalleled simulation performance.

We often are asked “How can I allocate resources to obtain the fastest simulation?” or

“What are the performance advantages of hardware X over hardware Y?” This report

attempts to quantify the performance profile of XFdtd’s GPU and MPI technologies.

All data in this report was collected by running a series of simulations using NVIDIA’s

PSG Cluster, access to which was graciously provided by NVIDIA Corporation. This

report will summarize and highlight the most useful findings from the approximately 160

simulations that were run.

Contents

Test Project Description

Computational Cluster

Impact of Network Interconnect on Simulation Performance

Impact of GPU Model on Simulation Performance

Impact of # of GPUs and Simulation Size (SMP)

Impact of # of GPUs and Simulation Size (MPI)

CPU vs. GPU

Impact of ECC

Conclusions

© 2013 Remcom Inc. All rights reserved.

Remcom XFdtd MPI/GPU Performance

Test Project Description

The project use to create the series of simulations for this report was the VariPose® man

with a patch antenna embedded in his chest, found at

http://www.remcom.com/examples/patch-antenna-in-body.html

This project was selected because large simulations could be created from it without

making the cell sizes artificially small relative to the smallest geometry and it is

representative of many real-world projects in terms of materials, aspect ratio and

excitation. The image below shows the full project to give perspective of the physical

size extent of the simulation space.

http://www.remcom.com/examples/patch-antenna-in-body.html

Remcom XFdtd MPI/GPU Performance

A suite of 12 simulations of different sizes was created using this project by keeping the

bounding box of the simulation constant while changing the base cell size. The

simulation was configured to run for 20k time steps, which was chosen such that the

fastest expected simulation would take no less than four minutes. The table below

describes the simulation specifications in detail. The memory requirements are specified

for XStream® GPU Acceleration RAM, not system RAM, and were verified by inspecting

the log of the actual memory allocated.

Cell Size

(mm)

XStream

RAM (GB)

Cell

Counts x

Cell

Counts y

Cell

Counts z

PML

Layers Total Cells

3.00 2 235 316 747 7 62,009,920

2.50 4 282 379 897 7 105,232,400

2.30 5 306 412 974 7 133,812,525

2.10 6 334 452 1068 7 174,424,755

1.90 8 370 499 1179 7 233,746,432

1.60 13 439 593 1399 7 386,763,744

1.40 19 501 678 1600 7 572,895,662

1.20 30 585 789 1866 7 901,160,884

1.10 40 638 861 2036 7 1,165,827,726

0.96 58 731 987 2332 7 1,744,680,000

0.90 70 780 1052 2488 7 2,112,207,045

0.86 79 816 1102 2604 7 2,418,984,695

Total cells were calculated as number of user space cells and padding cells. Simulation

throughput in this report is calculated using this number of cells per time step.

Simulation time was measured as the amount of time spent during the time stepping

phase for the purposes of throughput computation. XFdtd supports much larger

simulations sizes than shown here (virtually unlimited size), but could not have been

tested on the PSG cluster due to hardware resource limitations.

Remcom XFdtd MPI/GPU Performance

Computational Cluster

At the time of testing, the PSG cluster consisted of Westmere- and Sandy Bridge-based

computers populated with one to eight GPUs (depending upon machine architecture) of

various models ranging from M2050 through K20X. The nodes were interconnected with

Gigabit ethernet and one of three different forms of Infiniband: QDR connected at one

half bandwidth, QDR full bandwidth, and FDR full bandwidth.

Some terms that are used throughout this report are defined here:

Node: A single, complete computer that may have more than one GPU

SMP: Symmetric Multiprocessing, meaning that a single instance of the program

is run on a single node, possibly utilizing multiple GPUs, to compute a single

simulation

MPI: Message Passing Interface, meaning that multiple instances of the

program are run on one or more nodes, possibly utilizing multiple GPUs, and

those instances communicate with each other to compute a single simulation

Rank: One instance of the program when using MPI

The MPI testing tool “pingpong” was run to assess the network performance of the

various interconnects available on the cluster. This tool determines both latency, which

is a measure of the delay in time between initiating the sending of data from one node to

another and when the transfer actually begins, and throughput, which is how fast data is

transferred after the transfer begins. These quantities are measured for different “chunk”

sizes, which is the amount of data being transferred. The tool was run between three

different sets of four machines using both the 1Gb ethernet and the available Infiniband

interface. As can be seen in the charts below, ethernet performance was basically

equivalent between all of the machines, whereas Infiniband performance was

increasingly lower latency and higher throughput for QDR/2 (QDR half bandwidth), QDR

(QDR full bandwidth) and FDR (FDR full bandwidth), respectively. Note that the vertical

scales in these graphs is logarithmic, so the differences between these four interfaces is

significant.

Remcom XFdtd MPI/GPU Performance

Remcom XFdtd MPI/GPU Performance

Impact of Network Interconnect on Simulation Performance

To assess how the type of network interconnect affects simulation speed, several

simulations were selected to be run with MPI over both ethernet and QDR/2 interfaces.

Ideally, all different interface types would have been tested, but the only homogeneous

selection of machines large enough to perform the tests was interconnected with QDR/2.

The figure below shows a comparison of simulation throughput (measured in gigacells

per second) for different configurations. The notation in the legend is “{simulation size}

(#ranks, #gpus/rank = total #gpus)”. As expected, simulations using the Infiniband

interface outperformed those using ethernet. The difference is expected to be even

larger if QDR or FDR is used, though estimating how much different would be purely

speculative given that the speedup going from ethernet to QDR/2 is not the same ratio

as that between the latency or throughput of ethernet and QDR/2 as shown above. The

figure shows a “worst-case” speedup going from ethernet to Infiniband; any installation

with Infiniband should perform as well, or better, than shown.

Remcom XFdtd MPI/GPU Performance

Impact of GPU Model on Simulation Performance

The PSG cluster made the NVIDIA GPU models listed in the table below available for

testing.

GPU Model

Total RAM (GB)

[ECC Disabled] # cores

Peak Single

Precision

(GFLOPS)

BW (GB/sec)

[ECC Disabled]

GPU

Architecture

M2050 3 448 1030 148 Fermi

M2070 6 448 1030 150 Fermi

M2090 6 512 1331 177 Fermi

K10
1 4 1536 2288 160 Kepler

K20 6 2496 3520 208 Kepler

K20X 6 2688 3950 250 Kepler

At least one machine was available with two of each model. This allowed a

straightforward, head-to-head comparison between the different models for use with

XFdtd. Additionally, the M2090 was available in machines of both the Westmere and

Sandy Bridge architectures. The architecture is indicated with “wm” or “sb” in the figures

below.

For the GPU model comparisons, the five simulation sizes that could be run on pairs of

all models (2, 4, 5, 6 and 8GB) on a single machine (SMP) were chosen and executed.

The figure below shows the throughput per GPU as a function of RAM Occupancy for

each GPU model. RAM Occupancy is the proportion of the RAM on that GPU being

used in the simulation. The two main factors that affect throughput are the number of

GPU cores and the GPU bandwidth. Increasing the number of GPUs would seem to

have the obvious effect of increasing the throughput. Indeed, this can be seen in the

chart since the models with more cores outperform models with fewer cores for any

specific occupancy value. (The outlier in this statement is the K10, which needs more

investigation.) However, it has been known for some time that the FDTD algorithm is

bandwidth limited both on CPU and GPU architectures after reaching a certain number

of processors. This is seen in the graph by the fact that as the occupancy increases

(and therefore more bandwidth consumed), throughput flattens out or even decreases

slightly.

1
 The K10 card has two GPUs on it; the specifications provided here are per GPU.

Remcom XFdtd MPI/GPU Performance

This is interesting, but the end-user is probably more interested in the more direct

measurement of simulation runtime, and throughput vs. RAM occupancy is a different

type of measure. The figure below plots simulation runtime vs. simulation size for the

same simulations used to generate the figure above.

Remcom XFdtd MPI/GPU Performance

In these tests, the K10’s performance measure does not align with its specifications.

The reason for this is unknown and needs to be investigated further. A different set of

tests performed earlier on different hardware showed the K10 performing on-par with the

M2070 (on a per-GPU basis).

The K20X is a clear performance winner in all cases. It is also the most expensive of all

the models tested, as is shown in the table below which contains approximate current

prices (as of February 2013).

GPU Model Feb 2013 Price

M2050 $1610

M2070 $1840

M2090 $2530

K10 $3335

K20 $3323

K20X $4370

Remcom XFdtd MPI/GPU Performance

Note that the K10 has two GPUs whereas all the other models have one GPU. To

understand what the best purchase would be, one would need to understand the types

of problems that are to be solved so that the RAM requirements are known, and

understand of the cost and performance of a simulation. For example, taking the 5GB

simulation size above, we can create a table like the following to compare each of the

models to the M2090.

Model

Avg Simulation

time (s)

Performance

Relative to M2090

Cost of Hardware

Used

Cost Relative to

M2090

M2050 1296.48 0.89 $3220 0.64

M2070 1295.58 0.89 $3680 0.73

M2090 1151.15 1.00 $5060 1.00

K10 1412.32 0.82 $3335 0.66

K20 1100.16 1.05 $6644 1.31

K20X 970.49 1.19 $8740 1.73

From this data, the lowest cost/performance is the M2050, but it also has the lowest

amount of RAM. Taking into account available RAM, performance and cost, overall best

purchase at this time might be the M2070, with the same RAM as the M2090, 11% less

performance but 27% less expensive.

Remcom XFdtd MPI/GPU Performance

Impact of # of GPUs and Simulation Size (SMP)

One of the PSG cluster machines was equipped with eight M2090 GPUs. The figure

below shows simulation performance while the number of GPUs used and simulation

size were varied in this configuration (multiple GPUs in a single machine, SMP). For a

fixed simulation size, increasing the number of GPUs results in diminishing returns,

especially when the simulation size is small, since communications between the GPUs

becomes a larger and larger percentage of the overall runtime due to underutilized GPU

cores. The 5GB case seems to be an outlier since it dips slightly at eight GPUs, but the

2GB and 4GB cases are also basically flat moving from seven to eight GPUs. It is likely

that if smaller simulations (1GB or smaller) were tested, a peak in performance would be

seen for GPU numbers being less than eight.

In reviewing the chart and correlating each plot with RAM occupancy, it is interesting to

note that in general there is nearly N-speedup with the number of GPUs as long as RAM

occupancy of each GPU is roughly greater than 25%.

Remcom XFdtd MPI/GPU Performance

Another takeaway from this study is that except for extremely small (relative to total

available GPU RAM) simulations, one should use all the GPUs to obtain the fastest

simulation. However, if one wishes to obtain the best overall throughput on the available

hardware, it would be better to run multiple simulations, each using only a subset of the

available GPUs.

Impact of # of GPUs and Simulation Size (MPI)

The PSG cluster was configured with eight nodes containing one M2090 and eight

nodes containing two M2090’s, all interconnected with QDR/2 Infiniband. These

machines were used for the bulk of the testing in this report since they offered a

homogeneous platform with the use of up to 24 M2090 GPUs.

Because some of the machines had two M2090 cards, simulating with a specific number

of GPUs could be accomplished with different MPI/GPU configurations. For example,

using 16 GPUs could be accomplished by using 16 ranks using one GPU/rank on 16

different nodes (machines) or eight ranks using two GPUs/rank on eight different nodes.

To understand how different configurations affected performance, the 40GB simulation

was chosen and run in a number of ways as shown in the figure below. In the figure, the

legend format is “{number of ranks}, {number of nodes} ({number of gpus/rank}) {T}”,

where T == A for using all nodes containing 2xM2090, T==B for using all nodes

containing 1xM2090, and T=X for using a combination of A and B nodes.

Remcom XFdtd MPI/GPU Performance

This study produced a very interesting result. It appears that better performance is

achieved by using multiple ranks utilizing one GPU/rank multi-GPU node than by utilizing

multiple GPUs per rank. This is likely due to GPU/CPU contention within the process of

the latter. It is also clear from this chart that XFdtd scales very well, with nearly N

speedup with the number of GPUs over the tested range at this problem size. A very

interesting study would be to continue increasing the number of GPUs if a system with

the required hardware ever becomes available in order to see where N speedup no

longer holds.

Remcom XFdtd MPI/GPU Performance

As in the previous section, a study of simulation performance while varying the number

of GPUs and simulation size was performed using the same set of machines as above.

The results of this study are shown in the figure below. Although not called out

specifically in the figure, the 8GB, 12GB and 16GB simulation sizes were run with

different configurations similar to above. Again, for simulation sizes 40GB and higher

the speedup with increasing numbers of GPUs is nearly N. For smaller sizes, the

amount of communication between ranks becomes a larger percentage of the overall

runtime as the number of GPUs increases, since each GPU becomes less efficient due

to decreasing workload.

As in the previous section, by correlating each plot with RAM occupancy, it is interesting

to note that in general there is N-speedup with the number of GPUs as long as RAM

occupancy of each GPU is roughly greater than 25%.

Remcom XFdtd MPI/GPU Performance

CPU vs. GPU

The PSG cluster included a node with two 8-core, Intel Xeon E5-2670 @ 2.6GHz

processors based on the Sandy Bridge architecture. This provided the opportunity to

make a small comparison between CPU and GPU performance. The figure below

compares two simulation sizes for different numbers of CPU and GPUs. Clearly, GPUs

provide high performance for their cost relative to CPUs.

Impact of ECC

NVIDIA Fermi and Kepler architecture GPUs have Error Correcting Code (ECC)

capability built into them for detecting memory errors. This capability is enabled by

default, but can be disabled. The data in this report was generated on GPUs with ECC

disabled. One might ask, “Why would I disable error checking? Isn’t it possible I could

get bad results?” It is true that we have had numerous examples of NVIDIA cards failing

in ways that allowed simulations to run but gave bad results with ECC disabled;

however, it is unclear whether having ECC enabled would have detected the problem

anyway. As for why to disable it, several simulations were run with ECC enabled.

Comparing the runtimes, we find that enabling ECC reduces performance from

anywhere between 22% to 33%. This is because the ECC computation is performed on

the same processors on the GPU that the simulation uses. Additionally, ECC requires

extra memory storage (one bit per byte), and therefore the amount of available RAM on

the GPU is reduced by 1/8. Clearly, the extra peace of mind that may come with ECC

turned on also incurs a steep performance penalty.

Remcom XFdtd MPI/GPU Performance

One technique that is used to check the health of the GPUs is to periodically run a

known simulation and compare it with previous results. This works, but doesn’t cover

the entire memory space of the GPU and is also prone to false positives when XFdtd is

upgraded and results change due to bug fixes or improvements. A better technique is to

run a tool like cuda_memtest2 periodically to check for errors.

Conclusions

More than 160 simulations of various sizes using XFdtd’s XStream technology were run

in various SMP and MPI configurations using recent and the very latest NVIDIA GPU

hardware on NVIDIA’s PSG Cluster. Performance of these simulations was analyzed.

The following general conclusions were drawn:

● The NVIDIA K20X GPU currently offers the best performance in all cases, though

it is expensive.

● The M2050 or M2070 currently offer best value in terms of cost/performance

ratio.

● The intent of the user should be considered in determining how to distribute

simulations on fixed resources. Except for extremely small (relative to total

available GPU RAM) simulations, one should use all the GPUs to obtain the

fastest simulation. On the other hand, if the intent is obtain the best overall

throughput on available hardware, it is better to run multiple simulations, each

using only a subset of the available GPUs.

● For the M2090, both MPI and SMP use have nearly N-speedup as long as the

RAM occupancy on each CPU is greater than approximately 25%. Below this

level, inter-rank communications becomes a bottleneck. Since these tests were

performed using QDR half-bandwidth Infiniband, it is expected that QDR or FDR

interconnections would extend N-speedup for an even higher number of nodes

(or lower RAM occupancy level).

● One may obtain better performance by using multiple MPI ranks using one GPU

each on multi-GPU machines rather than one rank using multiple GPUs.

● A dedicated high speed network interconnect should be used to obtain the best

MPI performance, since it can increase performance a minimum of 4x even for

the slowest Infiniband.

Remcom thanks NVIDIA Corporation for providing access to the PSG Cluster for

performing the simulations used to generate this report, and Exxact Corporation for their

assistance in gaining that access.

Contact Remcom for additional information: sales@remcom.com, www.remcom.com

NVIDIA and CUDA are trademarks and/or registered trademarks of NVIDIA Corporation in the United States and other

countries.

2
 cuda_memtest is an open source project based on the well-known memtest86 program, available from

http://sourceforge.net/projects/cudagpumemtest/

http://www.nvidia.com/
http://www.nvidia.com/
http://www.exxactcorp.com/
http://www.exxactcorp.com/
mailto:sales@remcom.com
http://www.remcom.com/

	MPI-GPU Study Cover Page_2016Update.pdf
	MPI-GPU Study Body_2016Update.pdf

