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Abstract—The sensitivity of millimeter wave (mmWave) signals
to blockages is a fundamental challenge for mobile mmWave
communication systems. The sudden blockage of the line-of-sight
(LOS) link between the base station and the mobile user normally
leads to disconnecting the communication session, which highly
impacts the system reliability. Further, reconnecting the user to
another LOS base station incurs high beam training overhead
and critical latency problems. In this paper, we leverage machine
learning tools and propose a novel solution for these reliability
and latency challenges in mmWave MIMO systems. In the
developed solution, the base stations learn how to predict that a
certain link will experience blockage in the next few time frames
using their past observations of adopted beamforming vectors.
This allows the serving base station to proactively hand-over the
user to another base station with a highly probable LOS link.
Simulation results show that the developed deep learning based
strategy successfully predicts blockage/hand-off in close to 95% of
the times. This reduces the probability of communication session
disconnection, which ensures high reliability and low latency in
mobile mmWave systems.

I. INTRODUCTION

Reliability and latency are two main challenges for millime-
ter wave (mmWave) wireless systems [1]–[3]: (i) The high
sensitivity of mmWave signal propagation to blockages and
the large signal-to-noise ratio gap between LOS and non-LOS
links greatly affect the link reliability, and (ii) the frequent
search for new base stations (BSs) after link disconnections
causes critical latency overhead [4]. This paper leverages
machine learning tools to efficiently address these challenges
in mobile mmWave systems.

The coordination among multiple BSs to serve the mobile
user has been the main approach for enhancing the reliability
of mmWave communication links [1]–[3]. In [1], extensive
measurements were done for coordinated multi-point trans-
mission at 73 GHz, and showed that simultaneously serving
the user by a number of BSs noticeably improves the network
coverage. This coverage performance gain was also confirmed
by [2] in heterogeneous mmWave cellular networks using
stochastic geometry tools. To overcome the large training
overhead and increase the effective achievable rate in coordi-
nated transmissions, especially for highly-mobile applications,
[3] proposed to use machine learning tools to predict the
beamforming directions at the coordinating BSs from low-
overhead features. Despite the interesting coverage gains of
coordinated transmission shown in [1]–[3], BSs coordination
is associated with high cooperation overhead and difficult
synchronization challenges.

In this paper, we develop a novel solution that enhances
mmWave system reliability in high-mobile applications with-
out requiring the high cooperation overhead of coordinated
transmission. In our strategy, the serving BS uses the sequence
of beams that it used to serve a mobile user over the past period
of time to predict if a hand-off/blockage is going to happen in
the next few moments. This allows that user and its serving
BS to pro-actively hand-over the communication session to
the next BS, which prevents sudden link disconnections due
to blockage, improves the system reliability, and reduces
the latency overhead. To do that, we develop a machine
learning model based on gated recurrent neural networks that
are best suited for dealing with variable-length sequences.
Simulation results showed that the proposed solution predicts
blockages/hand-off with almost 95% success probability and
significantly improves the reliability of mmWave large antenna
array systems.

Notation: We use the following notation: A is a matrix,
a is a vector, a is a scalar, and A is a set. AT , A∗ are the
transpose and Hermitian (conjugate transpose) of A. [a]n is
the nth entry of a. A ◦B is Hadamard product of A and B.
N (m,R) is a complex Gaussian random vector with mean m
and covariance R.

II. SYSTEM AND CHANNEL MODELS

In this section, we describe the adopted mmWave system
and channel models. Consider the communication setup in
Fig. 1, where a mobile user is moving in a trajectory. At
every step in this trajectory, the mobile user gets connected
to one out of N candidate base stations (BSs). For simplicity,
we assume that the mobile user has a single antenna while
the BS is equipped with M antennas. Extending the results
of this paper to the case of multi-antenna users is straight-
forward. Let hn,k denote the M × 1 uplink channel vector
from the user to the nth BS at the kth subcarrier. If the user
is connected to the nth BS, this BS applies a beamforming
vector fn to serve this user. In the downlink transmission, the
received signal at the mobile user on the kth subcarrier can
then be expressed as

yk = h∗n,kfns+ v, (1)

where data symbol s ∈ C satisfies E
[
|s|2
]

= P , with P the
total transmit power, and v ∼ NC

(
0, σ2

)
is the receive noise at

the mobile user. Due to the high cost and power consumption
of mixed-signal components in mmWave large antenna array
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The final goal of training the model is to find the parameters
embd,Wr,Wz,Wh,Ur,Uz,Uh,Wf , cr, cz, ch, cf that
minimize this loss for all training instances.
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Fig. 1. The system model considers one user moving in a trajectory, and is
served by one out of N candidate BSs at every step in the trajectory.

systems, beamforming processing is normally done in the
analog domain using networks of phase shifters [5]. The
constraints on these phase shifters limit the beamforming
vectors to be selected from quantized codebooks. Therefore,
we assume that the BS beamforming vector fn is selected from
a quantized codebook F with size/cardinality |F| = MCB.
The codewords of this codebook are denoted as gm,m =
1, 2, ...,MCB. Further, we assume that the beamforming vector
fn is selected from the codebook F to maximize the received
signal power, i.e., according to the criterion

fn = arg max
gm∈F

∑

k

|h∗n,kgm|2. (2)

We adopt a wideband geometric mmWave channel model
[4] with L clusters. Each cluster `, ` = 1, ..., L is assumed
to contribute with one ray that has a time delay τ` ∈ R, and
azimuth/elevation angles of arrival (AoA) θ`, φ`. Further, let
ρn denote the path-loss between the user and the n-th BS,
and prc(τ) represents a pulse shaping function for TS-spaced
signaling evaluated at τ seconds. With this model, the delay-d
channel between the user and the nth BS follows

hn,d =

√
M

ρn

L∑

`=1

α`p(dTS − τ`)an (θ`, φ`) , (3)

where an (θ`, φ`) is the array response vector of the nth BS
at the AoAs θ`, φ`. Given the delay-d channel in (3), the
frequency domain channel vector at subcarrier k, hk,n, can
be written as

hn,k =

D−1∑

d=0

hd,ne
−j 2πk

K d. (4)

Considering a block-fading channel model, {hk,n}Kk=1 are
assumed to stay constant over the channel coherence time,
denoted TC [6] .

III. PROBLEM DEFINITION AND FORMULATION

Maintaining good link reliability is a key challenge for
mmWave communication systems, especially with mobility.
This is mainly due to the high sensitivity of mmWave signals

to blockages, which can frequency cause link disconnections.
Further, when the link to the current BS is blocked, the
mobile user incurs critical latency overhead to get connected
to another BS. To overcome these challenges, can we predict
that a link blockage is going to happen in the next few
moments? Successful blockage prediction can be very helpful
for mmWave system operation as it allows for proactive hand-
off to the next BS. This proactive hand-off enhances the
system reliability by ensuring session continuity and avoids the
latency overhead that results from link disconnection. In this
section, we formulate the mmWave blockage prediction and
proactive hand-off problem that we tackle in the next section.

Beam sequence and hand-off status: To formulate the
problem, we first define two important quantities, namely
the beam sequence and the hand-off status. Due to the user
mobility, the current/serving BS needs to frequently update
its beamforming vector fn ∈ F . The frequency of updating
the beams depends on a number of parameters including the
user speed and the beam width. A good approximation for the
period every which the BS needs to update its beam is the
beam coherence time, TB, which is defined as [6]

TB =
D

vs sin(α)

Θn

2
, (5)

where vs denotes the user speed, D is the distance between
the user and the scatterer/reflector (or the BS in the case of
LOS), α is the angle between the direction of travel and the
direction of the main scatterer/reflector (or the BS in the case
of LOS), and Θn defines the beam-width of the beams used by
BS n. Now, assuming that the current/serving BS n updates its
beamforming vector every beam-coherence time and calling it
a time step, we define f

(t)
n as the beamforming vector selected

by the nth BS to serve the mobile user in the tth time step,
with t = 1 representing the first time step after the handing-
over to the current BS. With this, we define the beam sequence
of BS n until time step t, denoted Bt as

Bt =
{
f (1)n , f (2)n , ..., f (t)n

}
. (6)

Further, we define st ∈ {1, 2, ..., N}, as the hand-off status
at the tth time step, with st = n indicating the user will
will stay connected to the current BS n in the next time step,
and st 6= n indicating that the mobile user will hand-off to
another BS in the t + 1 time step. It is important to note
here that predicting a hand-off in the next time step is more
general that predicting a blockage, as the hand-off can happen
due to a sudden blockage or a better SNR. Therefore, we will
generally adopt the hand-off prediction that implicitly include
link blockage prediction.

In this paper, we will focus on stationary blockages, which
leaves the user mobility as the main factor of the time-varying
behavior in the channel. To complete the formulation, we
leverage the note that the beamforming vector that maximizes
the received signal power, as defined in (2), heavily relies on
the user location and the surrounding environment geometry
(including blockages) [3]. Therefore, we formulate the prob-
lem as a prediction of the hand-off status at time t + 1,
i.e., ŝt, given the beam-sequence at time t, Bt. Formally,
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the objective of this paper is to maximize the probability of
successful blockage/hand-off prediction defined as

P [ŝt = st |Bt ] . (7)

In this next section, we leverage machine learning tools to
address this problem.

IV. DEEP LEARNING BASED PROACTIVE HAND-OFF

In this section, we explain our proposed solution that uses
deep learning tools, and more specifically recurrent neural
networks, to efficiently predict hand-off/blockages. First, we
highlight the key idea and system operation before delving
into the exact machine learning modeling in Section IV-B.

A. Main Idea and System Operation

In this subsection, we briefly describe the key idea of
the proposed solution as well as the learning/communications
system operation. We model the problem of predicting hand-
off/blockage as a sequence labeling problem. In summary,
given the sequence of previous beams Bt, the serving BS
predict the most likely base station that the user will connect
with in the next time step. If the predicted base station is
different from the current one, that indicates that a proactive
hand-off needs to happen. As we mentioned in Section III, by
adopting the problem of predicting the hand-off, our system
will also predict link blockages if they are going to happen in
the next time step as they will require a hand-off.

System operation: The proposed learning/communication
system operates in two phases. In the first phase (learning),
the mmWave communication system operates as normal: At
every beam coherence time, the current BS will update its
beamforming vector that serves the user. If the link is blocked,
the user will follow the initial access process to hand-off to
a new BS. During this process, the serving BS will feed the
beam sequence Bt and the hand-off status st at every time step
(beam coherence time) to its machine learning model that will
use it for training. It is important to note here that these beam
sequences have different lengths depending on the speed of
the user, its trajectory, the time period it is spent connected
to this BS, etc. As will be explained shortly, We designed our
deep learning model to carefully handle this variable sequence
length challenge.

After the machine learning model is well-trained, the serv-
ing BS will leverage it to predict if the link to the user will
face a blockage/hand-off in the next time-step. If a hand-
off is predicted, the user and its serving BS will pro-actively
initiate the hand-off process to the next BS to ensure session
continuity and avoid latency problems.

B. Machine Learning Model

Next, we describe the key elements of the proposed machine
learning model which is based on recurrent neural networks.

Input representation: At every time step t, the input to
our deep learning model is the tth beam index in the beam
sequence Bt. Let bt ∈ {1, 2, ...,MCB} denote the index of the
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Further, we define st 2 {0, 1}, as the hand-off status at the
tth time step, with st = 1 indicating the user will hand-off to
another BS in the t + 1 time step, and st = 0 indicating that
the mobile user will stay connected to the current BS in the
next time step.

In this paper, we will focus on stationary blockages, which
leaves the user mobility as the main factor of the time-varying
behavior in the channel. To complete the formulation, we
leverage the note that the beamforming vector that maximizes
the received signal power, as defined in (2), heavily relies on
the user location and the surrounding environment geometry
(including blockages) [6]. Therefore, we formulate the prob-
lem as a prediction of the hand-off state at time t+1, i.e., ŝt,
given the beam-sequence at time t, Bt. Formally, the objective
of this paper is to maximize the probability of successful
blockage/hand-off prediction defined as

P [ŝt = st |Bt ] . (7)

In this next section, we leverage machine learning tools to
address this problem.

IV. DEEP LEARNING BASED PROACTIVE HAND-OFF

A. Main Idea and System Operation

We model the problem of predicting blockage and reconnect
to base stations as a sequence labeling problem. Given a
sequence of beams, predict the most likely base station to
connect with in the next time step. At every time step, our
model has access to the history of beams, and it uses that to
predict the base station. If the predicted base station is different
from the current one, that indicates a blockage.

XXX note on variable length sequence

B. Machine Learning Model

Next, we describe the key elements of the proposed machine
learning model which is based on recurrent neural networks.

Input representation: At every time step t, the input to
our deep learning model is the tth beam index in the beam
sequence Bt. Let bt 2 {1, 2, ..., MCB} denote the index of the

tth beam index, then our model starts with an embedding layer
that maps every beam index bt to a vector xt.

xt = embd (bt) (8)

where embd is a lookup table we learn during the training.
The main value of this layer is to ... XXX.

Sequence processing: The central component of our model
is a Gated Recurrent Unit (GRU) [7] — a form of neural
networks that is best suited for processing variable length
sequnces. GRU is a recursive network that runs at every time
step of the input, and it maintains a hidden state qt which
is a function of the previous state and the current input. In
addition, it has a special gating mechanism that helps with long
sequences. More formally, GRU is implemented as depicted
in Fig. 2, and is described by the following model equations

rt = �g (Wrxt + Urqt�1 + cr) (9)
zt = �g (Wzxt + Uzqt�1 + cz) (10)
qt = (1 � zt) � qt�1

+ zt � �h (Wqxt + Uq (rt � qt�1) + cq) , (11)

where xt is the input vector, qt is the hidden state, rt and zt

are ”gates” that help the model learn from long distance de-
pendencies if needed. The weight matrices Wr, Wz,Ur,Uz

and the bias vectors cr, cz, cq are model parameters that are
learned during the machine learning training phase. Finally, �g

and �h are nonlinear activation functions, the first is sigmoid
and the second is tanh. Using non linear activation functions
allows the model to represent complex non-linear functions.

Output: At every time step t, the model has a hidden
state qt which encompasses what the model learned about
the sequence of beams until time step t, and the next step
is to use qt to predict the most likely base station ŝt for
the next time step. For this, we use a fully connected layer
with output size N equals number of possible base stations,
followed by a softmax activation that normalizes the outputs
into probabilities (they sum up to 1). The predicted hand-off
BS (the final output of the model) can then be expressed as

ŝt = arg max
n2{1,2,...,N}

softmax (Wfqt + cf)n (12)

where Wf and cf are the weights and biases of the fully-
connected layer. The softmax(.)n function takes a vector of
length N and outputs the probability that the nth BS is going
to be the BS of the next time step t + 1. The softmax(.)n

function is defined as follows:

softmax(a)n =
ean

PN
d=1 ead

. (13)

Training: The training objective in our supervised learning
model is minimizing the cross entropy loss between our model
predictions ŝt and the actual base station of the following time
step st. We compute this loss at every time step t then sum
over all time steps. The cross entropy loss at every time step
t is computed as follows:

loss(ŝt, st) = �
X

i

si
t log ŝi

t. (14)
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Further, we define st 2 {0, 1}, as the hand-off status at the
tth time step, with st = 1 indicating the user will hand-off to
another BS in the t + 1 time step, and st = 0 indicating that
the mobile user will stay connected to the current BS in the
next time step.
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leverage the note that the beamforming vector that maximizes
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In this next section, we leverage machine learning tools to
address this problem.
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model has access to the history of beams, and it uses that to
predict the base station. If the predicted base station is different
from the current one, that indicates a blockage.
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that maps every beam index bt to a vector xt.
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where embd is a lookup table we learn during the training.
The main value of this layer is to ... XXX.
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networks that is best suited for processing variable length
sequnces. GRU is a recursive network that runs at every time
step of the input, and it maintains a hidden state qt which
is a function of the previous state and the current input. In
addition, it has a special gating mechanism that helps with long
sequences. More formally, GRU is implemented as depicted
in Fig. 2, and is described by the following model equations

rt = �g (Wrxt + Urqt�1 + cr) (9)
zt = �g (Wzxt + Uzqt�1 + cz) (10)
qt = (1 � zt) � qt�1

+ zt � �h (Wqxt + Uq (rt � qt�1) + cq) , (11)

where xt is the input vector, qt is the hidden state, rt and zt

are ”gates” that help the model learn from long distance de-
pendencies if needed. The weight matrices Wr, Wz,Ur,Uz

and the bias vectors cr, cz, cq are model parameters that are
learned during the machine learning training phase. Finally, �g

and �h are nonlinear activation functions, the first is sigmoid
and the second is tanh. Using non linear activation functions
allows the model to represent complex non-linear functions.

Output: At every time step t, the model has a hidden
state qt which encompasses what the model learned about
the sequence of beams until time step t, and the next step
is to use qt to predict the most likely base station ŝt for
the next time step. For this, we use a fully connected layer
with output size N equals number of possible base stations,
followed by a softmax activation that normalizes the outputs
into probabilities (they sum up to 1). The predicted hand-off
BS (the final output of the model) can then be expressed as

ŝt = arg max
n2{1,2,...,N}

softmax (Wfqt + cf)n (12)

where Wf and cf are the weights and biases of the fully-
connected layer. The softmax(.)n function takes a vector of
length N and outputs the probability that the nth BS is going
to be the BS of the next time step t + 1. The softmax(.)n

function is defined as follows:

softmax(a)n =
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Training: The training objective in our supervised learning
model is minimizing the cross entropy loss between our model
predictions ŝt and the actual base station of the following time
step st. We compute this loss at every time step t then sum
over all time steps. The cross entropy loss at every time step
t is computed as follows:

loss(ŝt, st) = �
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Fig. 2. The proposed deep learning model that leverages recurrent neural
networks to predict the hand-off BS in the next time step, ŝt, given the past
beam sequence Bt

Further, we define st 2 {0, 1}, as the hand-off status at the
tth time step, with st = 1 indicating the user will hand-off to
another BS in the t + 1 time step, and st = 0 indicating that
the mobile user will stay connected to the current BS in the
next time step.

In this paper, we will focus on stationary blockages, which
leaves the user mobility as the main factor of the time-varying
behavior in the channel. To complete the formulation, we
leverage the note that the beamforming vector that maximizes
the received signal power, as defined in (2), heavily relies on
the user location and the surrounding environment geometry
(including blockages) [6]. Therefore, we formulate the prob-
lem as a prediction of the hand-off state at time t+1, i.e., ŝt,
given the beam-sequence at time t, Bt. Formally, the objective
of this paper is to maximize the probability of successful
blockage/hand-off prediction defined as

P [ŝt = st |Bt ] . (7)

In this next section, we leverage machine learning tools to
address this problem.

IV. DEEP LEARNING BASED PROACTIVE HAND-OFF

A. Main Idea and System Operation

We model the problem of predicting blockage and reconnect
to base stations as a sequence labeling problem. Given a
sequence of beams, predict the most likely base station to
connect with in the next time step. At every time step, our
model has access to the history of beams, and it uses that to
predict the base station. If the predicted base station is different
from the current one, that indicates a blockage.

XXX note on variable length sequence

B. Machine Learning Model

Next, we describe the key elements of the proposed machine
learning model which is based on recurrent neural networks.

Input representation: At every time step t, the input to
our deep learning model is the tth beam index in the beam
sequence Bt. Let bt 2 {1, 2, ..., MCB} denote the index of the

tth beam index, then our model starts with an embedding layer
that maps every beam index bt to a vector xt.

xt = embd (bt) (8)

where embd is a lookup table we learn during the training.
The main value of this layer is to ... XXX.

Sequence processing: The central component of our model
is a Gated Recurrent Unit (GRU) [7] — a form of neural
networks that is best suited for processing variable length
sequnces. GRU is a recursive network that runs at every time
step of the input, and it maintains a hidden state qt which
is a function of the previous state and the current input. In
addition, it has a special gating mechanism that helps with long
sequences. More formally, GRU is implemented as depicted
in Fig. 2, and is described by the following model equations

rt = �g (Wrxt + Urqt�1 + cr) (9)
zt = �g (Wzxt + Uzqt�1 + cz) (10)
qt = (1 � zt) � qt�1

+ zt � �h (Wqxt + Uq (rt � qt�1) + cq) , (11)

where xt is the input vector, qt is the hidden state, rt and zt

are ”gates” that help the model learn from long distance de-
pendencies if needed. The weight matrices Wr, Wz,Ur,Uz

and the bias vectors cr, cz, cq are model parameters that are
learned during the machine learning training phase. Finally, �g

and �h are nonlinear activation functions, the first is sigmoid
and the second is tanh. Using non linear activation functions
allows the model to represent complex non-linear functions.

Output: At every time step t, the model has a hidden
state qt which encompasses what the model learned about
the sequence of beams until time step t, and the next step
is to use qt to predict the most likely base station ŝt for
the next time step. For this, we use a fully connected layer
with output size N equals number of possible base stations,
followed by a softmax activation that normalizes the outputs
into probabilities (they sum up to 1). The predicted hand-off
BS (the final output of the model) can then be expressed as

ŝt = arg max
n2{1,2,...,N}

softmax (Wfqt + cf)n (12)

where Wf and cf are the weights and biases of the fully-
connected layer. The softmax(.)n function takes a vector of
length N and outputs the probability that the nth BS is going
to be the BS of the next time step t + 1. The softmax(.)n

function is defined as follows:
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Training: The training objective in our supervised learning
model is minimizing the cross entropy loss between our model
predictions ŝt and the actual base station of the following time
step st. We compute this loss at every time step t then sum
over all time steps. The cross entropy loss at every time step
t is computed as follows:
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networks to predict the hand-off BS in the next time step, ŝt, given the past
beam sequence Bt

Further, we define st 2 {0, 1}, as the hand-off status at the
tth time step, with st = 1 indicating the user will hand-off to
another BS in the t + 1 time step, and st = 0 indicating that
the mobile user will stay connected to the current BS in the
next time step.

In this paper, we will focus on stationary blockages, which
leaves the user mobility as the main factor of the time-varying
behavior in the channel. To complete the formulation, we
leverage the note that the beamforming vector that maximizes
the received signal power, as defined in (2), heavily relies on
the user location and the surrounding environment geometry
(including blockages) [6]. Therefore, we formulate the prob-
lem as a prediction of the hand-off state at time t+1, i.e., ŝt,
given the beam-sequence at time t, Bt. Formally, the objective
of this paper is to maximize the probability of successful
blockage/hand-off prediction defined as

P [ŝt = st |Bt ] . (7)

In this next section, we leverage machine learning tools to
address this problem.

IV. DEEP LEARNING BASED PROACTIVE HAND-OFF

A. Main Idea and System Operation

We model the problem of predicting blockage and reconnect
to base stations as a sequence labeling problem. Given a
sequence of beams, predict the most likely base station to
connect with in the next time step. At every time step, our
model has access to the history of beams, and it uses that to
predict the base station. If the predicted base station is different
from the current one, that indicates a blockage.

XXX note on variable length sequence

B. Machine Learning Model

Next, we describe the key elements of the proposed machine
learning model which is based on recurrent neural networks.

Input representation: At every time step t, the input to
our deep learning model is the tth beam index in the beam
sequence Bt. Let bt 2 {1, 2, ..., MCB} denote the index of the

tth beam index, then our model starts with an embedding layer
that maps every beam index bt to a vector xt.

xt = embd (bt) (8)

where embd is a lookup table we learn during the training.
The main value of this layer is to ... XXX.

Sequence processing: The central component of our model
is a Gated Recurrent Unit (GRU) [7] — a form of neural
networks that is best suited for processing variable length
sequnces. GRU is a recursive network that runs at every time
step of the input, and it maintains a hidden state qt which
is a function of the previous state and the current input. In
addition, it has a special gating mechanism that helps with long
sequences. More formally, GRU is implemented as depicted
in Fig. 2, and is described by the following model equations

rt = �g (Wrxt + Urqt�1 + cr) (9)
zt = �g (Wzxt + Uzqt�1 + cz) (10)
qt = (1 � zt) � qt�1

+ zt � �h (Wqxt + Uq (rt � qt�1) + cq) , (11)

where xt is the input vector, qt is the hidden state, rt and zt

are ”gates” that help the model learn from long distance de-
pendencies if needed. The weight matrices Wr, Wz,Ur,Uz

and the bias vectors cr, cz, cq are model parameters that are
learned during the machine learning training phase. Finally, �g

and �h are nonlinear activation functions, the first is sigmoid
and the second is tanh. Using non linear activation functions
allows the model to represent complex non-linear functions.

Output: At every time step t, the model has a hidden
state qt which encompasses what the model learned about
the sequence of beams until time step t, and the next step
is to use qt to predict the most likely base station ŝt for
the next time step. For this, we use a fully connected layer
with output size N equals number of possible base stations,
followed by a softmax activation that normalizes the outputs
into probabilities (they sum up to 1). The predicted hand-off
BS (the final output of the model) can then be expressed as

ŝt = arg max
n2{1,2,...,N}

softmax (Wfqt + cf)n (12)

where Wf and cf are the weights and biases of the fully-
connected layer. The softmax(.)n function takes a vector of
length N and outputs the probability that the nth BS is going
to be the BS of the next time step t + 1. The softmax(.)n

function is defined as follows:
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Training: The training objective in our supervised learning
model is minimizing the cross entropy loss between our model
predictions ŝt and the actual base station of the following time
step st. We compute this loss at every time step t then sum
over all time steps. The cross entropy loss at every time step
t is computed as follows:
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Further, we define st 2 {0, 1}, as the hand-off status at the
tth time step, with st = 1 indicating the user will hand-off to
another BS in the t + 1 time step, and st = 0 indicating that
the mobile user will stay connected to the current BS in the
next time step.

In this paper, we will focus on stationary blockages, which
leaves the user mobility as the main factor of the time-varying
behavior in the channel. To complete the formulation, we
leverage the note that the beamforming vector that maximizes
the received signal power, as defined in (2), heavily relies on
the user location and the surrounding environment geometry
(including blockages) [6]. Therefore, we formulate the prob-
lem as a prediction of the hand-off state at time t+1, i.e., ŝt,
given the beam-sequence at time t, Bt. Formally, the objective
of this paper is to maximize the probability of successful
blockage/hand-off prediction defined as

P [ŝt = st |Bt ] . (7)

In this next section, we leverage machine learning tools to
address this problem.

IV. DEEP LEARNING BASED PROACTIVE HAND-OFF

A. Main Idea and System Operation

We model the problem of predicting blockage and reconnect
to base stations as a sequence labeling problem. Given a
sequence of beams, predict the most likely base station to
connect with in the next time step. At every time step, our
model has access to the history of beams, and it uses that to
predict the base station. If the predicted base station is different
from the current one, that indicates a blockage.

XXX note on variable length sequence

B. Machine Learning Model

Next, we describe the key elements of the proposed machine
learning model which is based on recurrent neural networks.

Input representation: At every time step t, the input to
our deep learning model is the tth beam index in the beam
sequence Bt. Let bt 2 {1, 2, ..., MCB} denote the index of the

tth beam index, then our model starts with an embedding layer
that maps every beam index bt to a vector xt.

xt = embd (bt) (8)

where embd is a lookup table we learn during the training.
The main value of this layer is to ... XXX.

Sequence processing: The central component of our model
is a Gated Recurrent Unit (GRU) [7] — a form of neural
networks that is best suited for processing variable length
sequnces. GRU is a recursive network that runs at every time
step of the input, and it maintains a hidden state qt which
is a function of the previous state and the current input. In
addition, it has a special gating mechanism that helps with long
sequences. More formally, GRU is implemented as depicted
in Fig. 2, and is described by the following model equations

rt = �g (Wrxt + Urqt�1 + cr) (9)
zt = �g (Wzxt + Uzqt�1 + cz) (10)
qt = (1 � zt) � qt�1

+ zt � �h (Wqxt + Uq (rt � qt�1) + cq) , (11)

where xt is the input vector, qt is the hidden state, rt and zt

are ”gates” that help the model learn from long distance de-
pendencies if needed. The weight matrices Wr, Wz,Ur,Uz

and the bias vectors cr, cz, cq are model parameters that are
learned during the machine learning training phase. Finally, �g

and �h are nonlinear activation functions, the first is sigmoid
and the second is tanh. Using non linear activation functions
allows the model to represent complex non-linear functions.

Output: At every time step t, the model has a hidden
state qt which encompasses what the model learned about
the sequence of beams until time step t, and the next step
is to use qt to predict the most likely base station ŝt for
the next time step. For this, we use a fully connected layer
with output size N equals number of possible base stations,
followed by a softmax activation that normalizes the outputs
into probabilities (they sum up to 1). The predicted hand-off
BS (the final output of the model) can then be expressed as

ŝt = arg max
n2{1,2,...,N}

softmax (Wfqt + cf)n (12)

where Wf and cf are the weights and biases of the fully-
connected layer. The softmax(.)n function takes a vector of
length N and outputs the probability that the nth BS is going
to be the BS of the next time step t + 1. The softmax(.)n

function is defined as follows:
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Training: The training objective in our supervised learning
model is minimizing the cross entropy loss between our model
predictions ŝt and the actual base station of the following time
step st. We compute this loss at every time step t then sum
over all time steps. The cross entropy loss at every time step
t is computed as follows:
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Fig. 2. The proposed deep learning model that leverages recurrent neural
networks to predict the hand-off BS in the next time step, ŝt, given the past
beam sequence Bt

Further, we define st 2 {0, 1}, as the hand-off status at the
tth time step, with st = 1 indicating the user will hand-off to
another BS in the t + 1 time step, and st = 0 indicating that
the mobile user will stay connected to the current BS in the
next time step.

In this paper, we will focus on stationary blockages, which
leaves the user mobility as the main factor of the time-varying
behavior in the channel. To complete the formulation, we
leverage the note that the beamforming vector that maximizes
the received signal power, as defined in (2), heavily relies on
the user location and the surrounding environment geometry
(including blockages) [6]. Therefore, we formulate the prob-
lem as a prediction of the hand-off state at time t+1, i.e., ŝt,
given the beam-sequence at time t, Bt. Formally, the objective
of this paper is to maximize the probability of successful
blockage/hand-off prediction defined as

P [ŝt = st |Bt ] . (7)

In this next section, we leverage machine learning tools to
address this problem.

IV. DEEP LEARNING BASED PROACTIVE HAND-OFF

A. Main Idea and System Operation

We model the problem of predicting blockage and reconnect
to base stations as a sequence labeling problem. Given a
sequence of beams, predict the most likely base station to
connect with in the next time step. At every time step, our
model has access to the history of beams, and it uses that to
predict the base station. If the predicted base station is different
from the current one, that indicates a blockage.

XXX note on variable length sequence

B. Machine Learning Model

Next, we describe the key elements of the proposed machine
learning model which is based on recurrent neural networks.

Input representation: At every time step t, the input to
our deep learning model is the tth beam index in the beam
sequence Bt. Let bt 2 {1, 2, ..., MCB} denote the index of the

tth beam index, then our model starts with an embedding layer
that maps every beam index bt to a vector xt.

xt = embd (bt) (8)

where embd is a lookup table we learn during the training.
The main value of this layer is to ... XXX.

Sequence processing: The central component of our model
is a Gated Recurrent Unit (GRU) [7] — a form of neural
networks that is best suited for processing variable length
sequnces. GRU is a recursive network that runs at every time
step of the input, and it maintains a hidden state qt which
is a function of the previous state and the current input. In
addition, it has a special gating mechanism that helps with long
sequences. More formally, GRU is implemented as depicted
in Fig. 2, and is described by the following model equations

rt = �g (Wrxt + Urqt�1 + cr) (9)
zt = �g (Wzxt + Uzqt�1 + cz) (10)
qt = (1 � zt) � qt�1

+ zt � �h (Wqxt + Uq (rt � qt�1) + cq) , (11)

where xt is the input vector, qt is the hidden state, rt and zt

are ”gates” that help the model learn from long distance de-
pendencies if needed. The weight matrices Wr, Wz,Ur,Uz

and the bias vectors cr, cz, cq are model parameters that are
learned during the machine learning training phase. Finally, �g

and �h are nonlinear activation functions, the first is sigmoid
and the second is tanh. Using non linear activation functions
allows the model to represent complex non-linear functions.

Output: At every time step t, the model has a hidden
state qt which encompasses what the model learned about
the sequence of beams until time step t, and the next step
is to use qt to predict the most likely base station ŝt for
the next time step. For this, we use a fully connected layer
with output size N equals number of possible base stations,
followed by a softmax activation that normalizes the outputs
into probabilities (they sum up to 1). The predicted hand-off
BS (the final output of the model) can then be expressed as

ŝt = arg max
n2{1,2,...,N}

softmax (Wfqt + cf)n (12)

where Wf and cf are the weights and biases of the fully-
connected layer. The softmax(.)n function takes a vector of
length N and outputs the probability that the nth BS is going
to be the BS of the next time step t + 1. The softmax(.)n

function is defined as follows:
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Training: The training objective in our supervised learning
model is minimizing the cross entropy loss between our model
predictions ŝt and the actual base station of the following time
step st. We compute this loss at every time step t then sum
over all time steps. The cross entropy loss at every time step
t is computed as follows:
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Fig. 2. The proposed deep learning model that leverages recurrent neural
networks to predict the hand-off BS in the next time step, ŝt, given the past
beam sequence Bt

Further, we define st 2 {0, 1}, as the hand-off status at the
tth time step, with st = 1 indicating the user will hand-off to
another BS in the t + 1 time step, and st = 0 indicating that
the mobile user will stay connected to the current BS in the
next time step.

In this paper, we will focus on stationary blockages, which
leaves the user mobility as the main factor of the time-varying
behavior in the channel. To complete the formulation, we
leverage the note that the beamforming vector that maximizes
the received signal power, as defined in (2), heavily relies on
the user location and the surrounding environment geometry
(including blockages) [6]. Therefore, we formulate the prob-
lem as a prediction of the hand-off state at time t+1, i.e., ŝt,
given the beam-sequence at time t, Bt. Formally, the objective
of this paper is to maximize the probability of successful
blockage/hand-off prediction defined as

P [ŝt = st |Bt ] . (7)

In this next section, we leverage machine learning tools to
address this problem.

IV. DEEP LEARNING BASED PROACTIVE HAND-OFF

A. Main Idea and System Operation

We model the problem of predicting blockage and reconnect
to base stations as a sequence labeling problem. Given a
sequence of beams, predict the most likely base station to
connect with in the next time step. At every time step, our
model has access to the history of beams, and it uses that to
predict the base station. If the predicted base station is different
from the current one, that indicates a blockage.

XXX note on variable length sequence

B. Machine Learning Model

Next, we describe the key elements of the proposed machine
learning model which is based on recurrent neural networks.

Input representation: At every time step t, the input to
our deep learning model is the tth beam index in the beam
sequence Bt. Let bt 2 {1, 2, ..., MCB} denote the index of the

tth beam index, then our model starts with an embedding layer
that maps every beam index bt to a vector xt.

xt = embd (bt) (8)

where embd is a lookup table we learn during the training.
The main value of this layer is to ... XXX.

Sequence processing: The central component of our model
is a Gated Recurrent Unit (GRU) [7] — a form of neural
networks that is best suited for processing variable length
sequnces. GRU is a recursive network that runs at every time
step of the input, and it maintains a hidden state qt which
is a function of the previous state and the current input. In
addition, it has a special gating mechanism that helps with long
sequences. More formally, GRU is implemented as depicted
in Fig. 2, and is described by the following model equations

rt = �g (Wrxt + Urqt�1 + cr) (9)
zt = �g (Wzxt + Uzqt�1 + cz) (10)
qt = (1 � zt) � qt�1

+ zt � �h (Wqxt + Uq (rt � qt�1) + cq) , (11)

where xt is the input vector, qt is the hidden state, rt and zt

are ”gates” that help the model learn from long distance de-
pendencies if needed. The weight matrices Wr, Wz,Ur,Uz

and the bias vectors cr, cz, cq are model parameters that are
learned during the machine learning training phase. Finally, �g

and �h are nonlinear activation functions, the first is sigmoid
and the second is tanh. Using non linear activation functions
allows the model to represent complex non-linear functions.

Output: At every time step t, the model has a hidden
state qt which encompasses what the model learned about
the sequence of beams until time step t, and the next step
is to use qt to predict the most likely base station ŝt for
the next time step. For this, we use a fully connected layer
with output size N equals number of possible base stations,
followed by a softmax activation that normalizes the outputs
into probabilities (they sum up to 1). The predicted hand-off
BS (the final output of the model) can then be expressed as

ŝt = arg max
n2{1,2,...,N}

softmax (Wfqt + cf)n (12)

where Wf and cf are the weights and biases of the fully-
connected layer. The softmax(.)n function takes a vector of
length N and outputs the probability that the nth BS is going
to be the BS of the next time step t + 1. The softmax(.)n

function is defined as follows:
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Training: The training objective in our supervised learning
model is minimizing the cross entropy loss between our model
predictions ŝt and the actual base station of the following time
step st. We compute this loss at every time step t then sum
over all time steps. The cross entropy loss at every time step
t is computed as follows:
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Fig. 2. The proposed deep learning model that leverages recurrent neural
networks to predict the hand-off BS in the next time step, ŝt, given the past
beam sequence Bt

Further, we define st 2 {0, 1}, as the hand-off status at the
tth time step, with st = 1 indicating the user will hand-off to
another BS in the t + 1 time step, and st = 0 indicating that
the mobile user will stay connected to the current BS in the
next time step.

In this paper, we will focus on stationary blockages, which
leaves the user mobility as the main factor of the time-varying
behavior in the channel. To complete the formulation, we
leverage the note that the beamforming vector that maximizes
the received signal power, as defined in (2), heavily relies on
the user location and the surrounding environment geometry
(including blockages) [6]. Therefore, we formulate the prob-
lem as a prediction of the hand-off state at time t+1, i.e., ŝt,
given the beam-sequence at time t, Bt. Formally, the objective
of this paper is to maximize the probability of successful
blockage/hand-off prediction defined as

P [ŝt = st |Bt ] . (7)

In this next section, we leverage machine learning tools to
address this problem.

IV. DEEP LEARNING BASED PROACTIVE HAND-OFF

A. Main Idea and System Operation

We model the problem of predicting blockage and reconnect
to base stations as a sequence labeling problem. Given a
sequence of beams, predict the most likely base station to
connect with in the next time step. At every time step, our
model has access to the history of beams, and it uses that to
predict the base station. If the predicted base station is different
from the current one, that indicates a blockage.

XXX note on variable length sequence

B. Machine Learning Model

Next, we describe the key elements of the proposed machine
learning model which is based on recurrent neural networks.

Input representation: At every time step t, the input to
our deep learning model is the tth beam index in the beam
sequence Bt. Let bt 2 {1, 2, ..., MCB} denote the index of the

tth beam index, then our model starts with an embedding layer
that maps every beam index bt to a vector xt.

xt = embd (bt) (8)

where embd is a lookup table we learn during the training.
The main value of this layer is to ... XXX.

Sequence processing: The central component of our model
is a Gated Recurrent Unit (GRU) [7] — a form of neural
networks that is best suited for processing variable length
sequnces. GRU is a recursive network that runs at every time
step of the input, and it maintains a hidden state qt which
is a function of the previous state and the current input. In
addition, it has a special gating mechanism that helps with long
sequences. More formally, GRU is implemented as depicted
in Fig. 2, and is described by the following model equations

rt = �g (Wrxt + Urqt�1 + cr) (9)
zt = �g (Wzxt + Uzqt�1 + cz) (10)
qt = (1 � zt) � qt�1

+ zt � �h (Wqxt + Uq (rt � qt�1) + cq) , (11)

where xt is the input vector, qt is the hidden state, rt and zt

are ”gates” that help the model learn from long distance de-
pendencies if needed. The weight matrices Wr, Wz,Ur,Uz

and the bias vectors cr, cz, cq are model parameters that are
learned during the machine learning training phase. Finally, �g

and �h are nonlinear activation functions, the first is sigmoid
and the second is tanh. Using non linear activation functions
allows the model to represent complex non-linear functions.

Output: At every time step t, the model has a hidden
state qt which encompasses what the model learned about
the sequence of beams until time step t, and the next step
is to use qt to predict the most likely base station ŝt for
the next time step. For this, we use a fully connected layer
with output size N equals number of possible base stations,
followed by a softmax activation that normalizes the outputs
into probabilities (they sum up to 1). The predicted hand-off
BS (the final output of the model) can then be expressed as

ŝt = arg max
n2{1,2,...,N}

softmax (Wfqt + cf)n (12)

where Wf and cf are the weights and biases of the fully-
connected layer. The softmax(.)n function takes a vector of
length N and outputs the probability that the nth BS is going
to be the BS of the next time step t + 1. The softmax(.)n

function is defined as follows:

softmax(a)n =
ean
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Training: The training objective in our supervised learning
model is minimizing the cross entropy loss between our model
predictions ŝt and the actual base station of the following time
step st. We compute this loss at every time step t then sum
over all time steps. The cross entropy loss at every time step
t is computed as follows:

loss(ŝt, st) = �
X

i

si
t log ŝi
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networks to predict the hand-off BS in the next time step, ŝt, given the past
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Further, we define st 2 {0, 1}, as the hand-off status at the
tth time step, with st = 1 indicating the user will hand-off to
another BS in the t + 1 time step, and st = 0 indicating that
the mobile user will stay connected to the current BS in the
next time step.

In this paper, we will focus on stationary blockages, which
leaves the user mobility as the main factor of the time-varying
behavior in the channel. To complete the formulation, we
leverage the note that the beamforming vector that maximizes
the received signal power, as defined in (2), heavily relies on
the user location and the surrounding environment geometry
(including blockages) [6]. Therefore, we formulate the prob-
lem as a prediction of the hand-off state at time t+1, i.e., ŝt,
given the beam-sequence at time t, Bt. Formally, the objective
of this paper is to maximize the probability of successful
blockage/hand-off prediction defined as

P [ŝt = st |Bt ] . (7)

In this next section, we leverage machine learning tools to
address this problem.

IV. DEEP LEARNING BASED PROACTIVE HAND-OFF

A. Main Idea and System Operation

We model the problem of predicting blockage and reconnect
to base stations as a sequence labeling problem. Given a
sequence of beams, predict the most likely base station to
connect with in the next time step. At every time step, our
model has access to the history of beams, and it uses that to
predict the base station. If the predicted base station is different
from the current one, that indicates a blockage.

XXX note on variable length sequence

B. Machine Learning Model

Next, we describe the key elements of the proposed machine
learning model which is based on recurrent neural networks.

Input representation: At every time step t, the input to
our deep learning model is the tth beam index in the beam
sequence Bt. Let bt 2 {1, 2, ..., MCB} denote the index of the

tth beam index, then our model starts with an embedding layer
that maps every beam index bt to a vector xt.

xt = embd (bt) (8)

where embd is a lookup table we learn during the training.
The main value of this layer is to ... XXX.

Sequence processing: The central component of our model
is a Gated Recurrent Unit (GRU) [7] — a form of neural
networks that is best suited for processing variable length
sequnces. GRU is a recursive network that runs at every time
step of the input, and it maintains a hidden state qt which
is a function of the previous state and the current input. In
addition, it has a special gating mechanism that helps with long
sequences. More formally, GRU is implemented as depicted
in Fig. 2, and is described by the following model equations

rt = �g (Wrxt + Urqt�1 + cr) (9)
zt = �g (Wzxt + Uzqt�1 + cz) (10)
qt = (1 � zt) � qt�1

+ zt � �h (Wqxt + Uq (rt � qt�1) + cq) , (11)

where xt is the input vector, qt is the hidden state, rt and zt

are ”gates” that help the model learn from long distance de-
pendencies if needed. The weight matrices Wr, Wz,Ur,Uz

and the bias vectors cr, cz, cq are model parameters that are
learned during the machine learning training phase. Finally, �g

and �h are nonlinear activation functions, the first is sigmoid
and the second is tanh. Using non linear activation functions
allows the model to represent complex non-linear functions.

Output: At every time step t, the model has a hidden
state qt which encompasses what the model learned about
the sequence of beams until time step t, and the next step
is to use qt to predict the most likely base station ŝt for
the next time step. For this, we use a fully connected layer
with output size N equals number of possible base stations,
followed by a softmax activation that normalizes the outputs
into probabilities (they sum up to 1). The predicted hand-off
BS (the final output of the model) can then be expressed as

ŝt = arg max
n2{1,2,...,N}

softmax (Wfqt + cf)n (12)

where Wf and cf are the weights and biases of the fully-
connected layer. The softmax(.)n function takes a vector of
length N and outputs the probability that the nth BS is going
to be the BS of the next time step t + 1. The softmax(.)n

function is defined as follows:

softmax(a)n =
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Training: The training objective in our supervised learning
model is minimizing the cross entropy loss between our model
predictions ŝt and the actual base station of the following time
step st. We compute this loss at every time step t then sum
over all time steps. The cross entropy loss at every time step
t is computed as follows:

loss(ŝt, st) = �
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Further, we define st 2 {0, 1}, as the hand-off status at the
tth time step, with st = 1 indicating the user will hand-off to
another BS in the t + 1 time step, and st = 0 indicating that
the mobile user will stay connected to the current BS in the
next time step.

In this paper, we will focus on stationary blockages, which
leaves the user mobility as the main factor of the time-varying
behavior in the channel. To complete the formulation, we
leverage the note that the beamforming vector that maximizes
the received signal power, as defined in (2), heavily relies on
the user location and the surrounding environment geometry
(including blockages) [6]. Therefore, we formulate the prob-
lem as a prediction of the hand-off state at time t+1, i.e., ŝt,
given the beam-sequence at time t, Bt. Formally, the objective
of this paper is to maximize the probability of successful
blockage/hand-off prediction defined as

P [ŝt = st |Bt ] . (7)

In this next section, we leverage machine learning tools to
address this problem.

IV. DEEP LEARNING BASED PROACTIVE HAND-OFF

A. Main Idea and System Operation

We model the problem of predicting blockage and reconnect
to base stations as a sequence labeling problem. Given a
sequence of beams, predict the most likely base station to
connect with in the next time step. At every time step, our
model has access to the history of beams, and it uses that to
predict the base station. If the predicted base station is different
from the current one, that indicates a blockage.

XXX note on variable length sequence

B. Machine Learning Model

Next, we describe the key elements of the proposed machine
learning model which is based on recurrent neural networks.

Input representation: At every time step t, the input to
our deep learning model is the tth beam index in the beam
sequence Bt. Let bt 2 {1, 2, ..., MCB} denote the index of the

tth beam index, then our model starts with an embedding layer
that maps every beam index bt to a vector xt.

xt = embd (bt) (8)

where embd is a lookup table we learn during the training.
The main value of this layer is to ... XXX.

Sequence processing: The central component of our model
is a Gated Recurrent Unit (GRU) [7] — a form of neural
networks that is best suited for processing variable length
sequnces. GRU is a recursive network that runs at every time
step of the input, and it maintains a hidden state qt which
is a function of the previous state and the current input. In
addition, it has a special gating mechanism that helps with long
sequences. More formally, GRU is implemented as depicted
in Fig. 2, and is described by the following model equations

rt = �g (Wrxt + Urqt�1 + cr) (9)
zt = �g (Wzxt + Uzqt�1 + cz) (10)
qt = (1 � zt) � qt�1

+ zt � �h (Wqxt + Uq (rt � qt�1) + cq) , (11)

where xt is the input vector, qt is the hidden state, rt and zt

are ”gates” that help the model learn from long distance de-
pendencies if needed. The weight matrices Wr, Wz,Ur,Uz

and the bias vectors cr, cz, cq are model parameters that are
learned during the machine learning training phase. Finally, �g

and �h are nonlinear activation functions, the first is sigmoid
and the second is tanh. Using non linear activation functions
allows the model to represent complex non-linear functions.

Output: At every time step t, the model has a hidden
state qt which encompasses what the model learned about
the sequence of beams until time step t, and the next step
is to use qt to predict the most likely base station ŝt for
the next time step. For this, we use a fully connected layer
with output size N equals number of possible base stations,
followed by a softmax activation that normalizes the outputs
into probabilities (they sum up to 1). The predicted hand-off
BS (the final output of the model) can then be expressed as

ŝt = arg max
n2{1,2,...,N}

softmax (Wfqt + cf)n (12)

where Wf and cf are the weights and biases of the fully-
connected layer. The softmax(.)n function takes a vector of
length N and outputs the probability that the nth BS is going
to be the BS of the next time step t + 1. The softmax(.)n

function is defined as follows:

softmax(a)n =
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Training: The training objective in our supervised learning
model is minimizing the cross entropy loss between our model
predictions ŝt and the actual base station of the following time
step st. We compute this loss at every time step t then sum
over all time steps. The cross entropy loss at every time step
t is computed as follows:

loss(ŝt, st) = �
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Further, we define st 2 {0, 1}, as the hand-off status at the
tth time step, with st = 1 indicating the user will hand-off to
another BS in the t + 1 time step, and st = 0 indicating that
the mobile user will stay connected to the current BS in the
next time step.

In this paper, we will focus on stationary blockages, which
leaves the user mobility as the main factor of the time-varying
behavior in the channel. To complete the formulation, we
leverage the note that the beamforming vector that maximizes
the received signal power, as defined in (2), heavily relies on
the user location and the surrounding environment geometry
(including blockages) [6]. Therefore, we formulate the prob-
lem as a prediction of the hand-off state at time t+1, i.e., ŝt,
given the beam-sequence at time t, Bt. Formally, the objective
of this paper is to maximize the probability of successful
blockage/hand-off prediction defined as

P [ŝt = st |Bt ] . (7)

In this next section, we leverage machine learning tools to
address this problem.

IV. DEEP LEARNING BASED PROACTIVE HAND-OFF

A. Main Idea and System Operation

We model the problem of predicting blockage and reconnect
to base stations as a sequence labeling problem. Given a
sequence of beams, predict the most likely base station to
connect with in the next time step. At every time step, our
model has access to the history of beams, and it uses that to
predict the base station. If the predicted base station is different
from the current one, that indicates a blockage.

XXX note on variable length sequence

B. Machine Learning Model

Next, we describe the key elements of the proposed machine
learning model which is based on recurrent neural networks.

Input representation: At every time step t, the input to
our deep learning model is the tth beam index in the beam
sequence Bt. Let bt 2 {1, 2, ..., MCB} denote the index of the

tth beam index, then our model starts with an embedding layer
that maps every beam index bt to a vector xt.

xt = embd (bt) (8)

where embd is a lookup table we learn during the training.
The main value of this layer is to ... XXX.

Sequence processing: The central component of our model
is a Gated Recurrent Unit (GRU) [7] — a form of neural
networks that is best suited for processing variable length
sequnces. GRU is a recursive network that runs at every time
step of the input, and it maintains a hidden state qt which
is a function of the previous state and the current input. In
addition, it has a special gating mechanism that helps with long
sequences. More formally, GRU is implemented as depicted
in Fig. 2, and is described by the following model equations

rt = �g (Wrxt + Urqt�1 + cr) (9)
zt = �g (Wzxt + Uzqt�1 + cz) (10)
qt = (1 � zt) � qt�1

+ zt � �h (Wqxt + Uq (rt � qt�1) + cq) , (11)

where xt is the input vector, qt is the hidden state, rt and zt

are ”gates” that help the model learn from long distance de-
pendencies if needed. The weight matrices Wr, Wz,Ur,Uz

and the bias vectors cr, cz, cq are model parameters that are
learned during the machine learning training phase. Finally, �g

and �h are nonlinear activation functions, the first is sigmoid
and the second is tanh. Using non linear activation functions
allows the model to represent complex non-linear functions.

Output: At every time step t, the model has a hidden
state qt which encompasses what the model learned about
the sequence of beams until time step t, and the next step
is to use qt to predict the most likely base station ŝt for
the next time step. For this, we use a fully connected layer
with output size N equals number of possible base stations,
followed by a softmax activation that normalizes the outputs
into probabilities (they sum up to 1). The predicted hand-off
BS (the final output of the model) can then be expressed as

ŝt = arg max
n2{1,2,...,N}

softmax (Wfqt + cf)n (12)

where Wf and cf are the weights and biases of the fully-
connected layer. The softmax(.)n function takes a vector of
length N and outputs the probability that the nth BS is going
to be the BS of the next time step t + 1. The softmax(.)n

function is defined as follows:

softmax(a)n =
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Training: The training objective in our supervised learning
model is minimizing the cross entropy loss between our model
predictions ŝt and the actual base station of the following time
step st. We compute this loss at every time step t then sum
over all time steps. The cross entropy loss at every time step
t is computed as follows:

loss(ŝt, st) = �
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t log ŝi

t. (14)
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The final goal of training the model is to find the parameters
embd,Wr,Wz,Wh,Ur,Uz,Uh,Wf , cr, cz, ch, cf that
minimize this loss for all training instances.

V. SIMULATION RESULTS
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tth beam index, then our model starts with an embedding layer
that maps every beam index bt to a vector xt.

xt = embd (bt) (8)

where embd is a lookup table we learn during the training.
Sequence processing: The central component of our model

is a Gated Recurrent Unit (GRU) [7] — a form of neural
networks that is best suited for processing variable length
sequnces. GRU is a recursive network that runs at every time
step of the input, and it maintains a hidden state qt which
is a function of the previous state and the current input. In
addition, it has a special gating mechanism that helps with long
sequences. More formally, GRU is implemented as depicted
in Fig. 2, and is described by the following model equations

rt = σg (Wrxt + Urqt−1 + cr) (9)
zt = σg (Wzxt + Uzqt−1 + cz) (10)
qt = (1− zt) ◦ qt−1

+ zt ◦ σq (Wqxt + Uq (rt ◦ qt−1) + cq) , (11)

where xt is the input vector, qt is the hidden state, rt and zt
are ”gates” that help the model learn from long distance de-
pendencies if needed. The weight matrices Wr, Wz,Ur,Uz

and the bias vectors cr, cz, cq are model parameters that are
learned during the machine learning training phase. Finally, σg
and σq are nonlinear activation functions, the first is sigmoid
and the second is tanh. Using non linear activation functions
allows the model to represent complex non-linear functions.

Output: At every time step t, the model has a hidden
state qt which encompasses what the model learned about
the sequence of beams until time step t, and the next step
is to use qt to predict the most likely base station ŝt for
the next time step. For this, we use a fully connected layer
with output size N equals number of possible base stations,
followed by a softmax activation that normalizes the outputs
into probabilities (they sum up to 1). The predicted hand-off
BS (the final output of the model) can then be expressed as

ŝt = arg max
n∈{1,2,...,N}

softmax (Wfqt + cf)n (12)

where Wf and cf are the weights and biases of the fully-
connected layer. The softmax(.)n function takes a vector of
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Fig. 3. This figure illustrates the considered simulation setup where two
candidate BSs, each has ULA, serve one vehicle moving in a street.

length N and outputs the probability that the nth BS is going
to be the BS of the next time step t + 1. The softmax(.)n
function is defined as follows:

softmax(a)n =
e[a]n

∑N
d=1 e

[a]d
. (13)

Training: The training objective in our supervised learning
model is minimizing the cross entropy loss between our model
predictions ŝt and the actual base station of the following time
step st. We compute this loss at every time step t then sum
over all time steps. The cross entropy loss at every time step
t is computed as follows:

loss(ŝt, st) = −
∑

i

[p]i,t log [p̂]i,t. (14)

where the reference prediction vector p has 1 in the entry
corresponding to the index of the correct BS in st, and zero
otherwise. Further, the model prediction vector p̂ has the dth
entry equals to softmax(a)d,∀d.
The final goal of training the model is to find the parameters
embd,Wr,Wz,Wh,Ur,Uz,Uh,Wf , cr, cz, ch, cf that
minimize this loss for all training instances.

V. SIMULATION RESULTS

In this section, we evaluate the performance of the proposed
deep-learning based proactive hand-off solution.

Simulation setup: We adopt the mmWave system and
channel models in Section II, with two candidate BSs to
serve one vehicle/mobile user moving in a street, as de-
picted in Fig. 3. To generate realistic data for the channel
parameters (AoAs/delay/etc.), we use the commercial ray-
tracing simulator, Wireless InSite [8], which is widely used
in mmWave research [6], [9], and is verified with channel
measurements [9]. Each BS is installed on one lamp post at
height 4 m, and employs a 32-element uniform linear array
(ULA) facing the street. The mobile user is moving in straight-
line trajectories in the street, that can be any where of the
street width, and with maximum trajectory length of 160
m. The trajectory starting point in randomly selected from
the first 40m of the street, and the user speed is randomly
selected from {8, 16, 24, 32, 40} km/hr. The BS selects its
beamforming vector from a uniformly quantized beamsteering
codebook with an oversampling factor of 4, i.e. the codebook
size is MCB = 128. At every beam coherence time, the BS
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Fig. 4. This figure shows that the proposed deep-learning proactive hand-off
solution successfully predicts blockages/hand-off with high probabilities when
the machine learning model is well-trained.

beamforming vector is updated to maximize the receive SNR
at the user. During the uplink training, the MS is assumed to
use 30dBm transmit power, and the noise variance corresponds
to 1GHz system bandwidth. The system is assumed to operate
at 60GHz carrier frequency.

We consider the deep learning model described in Sec-
tion IV-B. The neural network model has an embedding that
outputs vectors of length 20 to the GRU unit, with maximum
sequence length of 454. Since we have only 2 BSs in out
experiment, the fully-connected layer has only two outputs
that go to the softmax function. We use the Adam optimizer
[10]. In the deep learning experimental work, we used the
Keras libraries [11] with a TensorFlow backend.

Hand-off/Blockage prediction: To evaluate the perfor-
mance of the proposed deep-learning based proactive hand-
off solution, Fig. 4 plots the blockage/hand-off successful
prediction probability, defined in (7), versus the training size.
Fig. 4 shows that with sufficient dataset size (larger than 12
thousand samples), the machine learning model successfully
predicts the hand-off with more than 90% probability, given
only the sequence of past beams Bt. This illustrates the
potential of the proposed solution in enhancing the reliability
of next-generation mmWave systems.

VI. CONCLUSION

In this paper, we proposed a novel solution for the reliability
and latency problem in mobile mmWave systems. Our solution
leveraged deep learning tools to efficiently predict blockage
and the need for hand-off. This allows the mobile user to
proactively hand-off to the next BS without disconnecting the
session or suffering from high latency overhead due to sudden
link disconnections. The simulation results showed that the
developed proactive hand-off strategy can successfully predicts
blockage/hand-off with high probability when the machine
learning model is trained with reasonable dataset sizes. In the
future, it is interesting to extend the developed solution to
multi-user systems and account for mobile blockages.
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