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Design of Antennas from Primitive Shapes
Using Genetic Algorithms

Julie Rolla,∗ Bryan Reynolds,† Dylan Wells,† Jacob Weiler,† Amy Connolly,† and Ryan

Debolt†

ABSTRACT. — This report presents developments to a genetic algorithm that evolves

antenna designs from primitive shapes. The gain patterns of individuals are evaluated

using XFdtd electromagnetic simulation software, and fitness is evaluated by

comparison to a target gain pattern. This work is an update to a prior report

demonstrating evolution of 3D structures to target geometries. The algorithm was

updated to evolve antennas by adding feeds, early shorting prevention, and simulation

components. Different fitness functions were developed, and differences in convergence

to similar gain patterns was explored. Computational efficiency was also improved by

converting to an asynchronous steady-state algorithm and incorporating, among other

improvements, an elite method, and a diversity forcing feature. The algorithm was

able to evolve antennas to match the desired gain pattern using each fitness function.

The algorithm was run for a single-frequency (300MHz) design and for a broadband

case (200MHz to 800MHz). Later versions of the algorithm will utilize fitness

functions connected to science simulation software to generate designs optimized to

science outcomes. Future improvements to the algorithm to facilitate more complex

designs and to reduce computation time are also discussed.

I. Introduction

This report introduces an evolutionary algorithm that evolves antennas from primitive

shapes to specified gain patterns without predefined antenna topologies (i.e., dipole or

biconical). It expands upon the previous August 2023 Interplanetary Network

Progress Report “Design of 3D Antenna Geometries Using Genetic Algorithms,”
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where a method for evolving 3D structures using genetic algorithms (GAs) was

developed [1]. The initial report demonstrated an algorithm capable of creating 3D

structures that matched predefined target shapes, marking an initial step toward the

goal of designing optimized antennas for specific scientific outcomes. The method

consisted of assembling geometric primitives and evaluating fitness using cost

functions tied to the design’s similarity to a target shape. This work builds on the

previous GA by implementing cost functions that are derived from performance

metrics based on antenna radiation patterns produced in XFdtd, an electromagnetic

finite difference in the time domain simulation software by Remcom [2]. Individuals

are evaluated on their similarity to a predefined target gain pattern or sensitivity in

specified directions. Additionally, several enhancements to the previous GA were made

to improve the speed of converging to a high-quality solution and consequently reduce

computation time. Future versions of the algorithm will evolve toward complex science

goals by integrating experiment simulation software and broadening its capabilities to

generate antennas with more complex designs.

This work was originally motivated by astrophysics experiments dependent on highly

sensitive detectors, although the potential impact goes beyond astrophysics by

reducing instrument development overhead while adhering to constraint

considerations. The design of such instruments poses a substantial challenge,

especially when restricted by scheduling and cost limitations. These optimization

tasks typically occur in high-dimensional parameter spaces with multiple objectives

and are computationally prohibitive to solve using traditional techniques; however,

using innovative Artificial Intelligence (AI) optimization algorithms, such as GAs, vast

parameter spaces can be realistically explored. This report delves into utilizing GAs to

design antennas optimized for specific antenna responses, with future goals of

multiobjective optimization tied to sensitivity to science outcomes. GAs are

computational heuristics that mimic evolutionary principles to efficiently identify

solutions to defined problems. Although this endeavor has the potential to expand to

a wide range of detector technologies, the immediate focus is on enhancing sensitivity

for radio observations, including antennas for the Global Navigation Satellite System

(GNSS) [3, 4, 5], passive sounding [6, 7, 8], and low-frequency astronomy radio signals,

including radio emissions from extrasolar planets [9, 10, 11], cosmic ray electrons and

cosmic magnetic fields [12, 13, 14, 15, 16], and the highly redshifted neutral hydrogen

hyperfine line [17, 18, 19, 20]. By addressing a critical need for innovative early-stage

design optimization tools, this work aims to increase the scientific capabilities of future

astrophysics experiments (ranging from instrumentation on flagship missions to

low-cost SmallSats), which face complex performance, geometry, and budget

requirements.

Evolutionary algorithms have been used in a variety of applications, including antenna

design, and remain a focal point of active research [21, 22, 23, 24]. Antenna array

optimization using GAs has also been an area of recent development [25, 26, 27]. The

Genetically Evolving Neutrino Telescopes (GENETIS) collaboration has pioneered the
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integration of GAs with antenna and science simulation software, aiming to design

biconical and horn antennas with improved sensitivity to neutrino

signals [28, 29, 30, 31, 32]. McCarthy et al. utilized a GA to design a horn antenna for

detecting of Cosmic Microwave Background radiation [33]. Furthermore, the

Long-Baseline Neutrino Oscillation (LBNO) experiment and the Deep Underground

Neutrino Experiment (DUNE) optimized the design of neutrino beamlines through a

GA using science simulations to determine fitness [34, 35]. GAs have contributed to

optimizing various aspects of detector design, including layout, sensors, shielding,

trigger optimization, and antenna arrays [36, 37, 38, 39, 40].

GAs are a powerful heuristic search method capable of finding high-quality solutions

to complex problems [41, 42, 43, 21]. They are effective in problems with many

high-cardinality parameters and have been successfully demonstrated in numerous

applications across many disciplines. Rooted in principles of biological evolution, GAs

begin with an initial set (population) of solutions (individuals) that undergo iterative

evolution toward improved results. Individuals are evaluated by a cost or fitness

function, which informs the selection of parents (using techniques called selection

methods) for the generation’s new designs, called children. Children are formed from

parents with various methods of mutating or combining individuals through

techniques called operators. As in biology, evolutionary pressure induced by selection

methods tied to cost functions results in individuals with enhanced designs. Given

their stochastic nature, GA results will fluctuate when evolving toward the same

solution multiple times. To increase the probability of a successful algorithm,

consideration must be taken in the design of selection methods, genetic operators,

hyperparameters, and, most importantly, the fitness function.

Expanding to build antennas, instead of simple 3D structures shown in our previous

report, required three main developments to the GA. First, the construction of 3D

models transitioned to utilize XFdtd in order to simulate the individual gain patterns

required by the fitness calculations, moving away from Blender [44], an open-source

3D modeling software. Second, adjustments were made to the structures to include

the antenna feed and ground components that are necessary to generate an antenna

response. Finally, mechanisms were established to prevent the designs from shorting

across the feed and ground points, as such designs are typically ineffective. These

modifications and the associated challenges are discussed in more detail in

Section II.B.

This report presents initial findings resulting from the use of a GA to construct

antennas and evolve individuals optimized for desired antenna responses. Section II

describes a detailed overview of the GA, including constructing an individual, XFdtd

simulations, fitness evaluation, and the selection methods and operators. Section III,

describes the process of calculating various fitness scores that were explored. The

results of the evolution using each fitness function are given in Section IV. Finally,

Section V discusses the significance of the results, the next steps in evolving antenna

designs toward specified science outcomes, and identifies potential challenges.

3



II. Genetic Algorithm

A flowchart of the GA used in this analysis is shown in Figure 1, and the steps are

discussed in detail in this section. The loop begins by generating an initial population

of solutions. Following the steps described in Section II.A below, the algorithm

generates individuals and then constructs those designs in XFdtd. XFdtd simulates

the gain response pattern of each individual, which allows fitness scores to be

calculated by comparing each response pattern to a target gain pattern. The fitness

scores are then used to select parents and create offspring. The GA has a numerous

parameters outlined in Appendix I.

Parent 
Selection

Initial Designs Improved 
Designs

Designs Created 
in XFdtd

Fitness Function 
Evaluation

Offspring 
Creation

Figure 1. Diagram illustrating the basic loop of the GA. Green boxes indicate initialization and

termination. The blue boxes show the steps required to evaluate the fitness function, and the red

boxes give the steps for creating the new individuals.

A. Building an Individual

Single individuals are built from basic geometric primitive shapes connected to form a

more complex structure as shown by the example on the left side of Figure 2. Future

iterations of the algorithm will allow for disconnected components that affect the

antenna beam pattern, such as reflectors and directors used in Yagi-Uda antennas.

These primitives may be thought of as building blocks taking the form of one of four

primitive shapes: cuboids, cylinders, cones, or spheres. An individual is fully described

by the dimensions, location, orientation, and connections of each component shape. In

the code, an individual is represented by a dictionary tree structure that contains the

genes of all the component shapes. The right side of Figure 2 illustrates the tree

structure for the example individual. Currently, each side of a shape is only allowed to

have one connected shape. All shape types behave consistently, with a maximum of

one attachment allowed in each region corresponding to its front, back, left, right, top,

and bottom. Additionally, when cylinders and cones are added to another shape, they

always connect with their flat top or bottom face. In this analysis, individuals were

allowed to be constructed with up to seven primitive shapes. A more thorough

discussion of the basic methodology for individual construction is given in the prior

progress report [1].

For the constructed geometries to perform as antenna designs, several additions were

implemented, including the placement of voltage feed and ground points and the

prevention of unwanted shorting across the feed point. The algorithm begins

constructing an individual by first creating a small cube at the origin as a placeholder
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Base Shape
● Shape Type: Cuboid
● Dimensions = {L= 2, W = 2, H = 2}
● Rotation = {θ= 0, Φ= 0}
● Connections = {Side 2, Side 5}

Shape 2
● Shape Type: Sphere
● Dimensions = {R = 1}
● Location= {0, 2, 0}
● Rotation = {θ= 0°, Φ= 0°}
● Connected from = {Base Side 2}
● Connections = {None}

Shape 3
● Shape Type: Cylinder
● Dimensions = {R = 1, H = 2}
● Location= {1, -1, 2}
● Rotation = {θ= 0°, Φ= 0°}
● Connected from = {Base Side 5}
● Connections = {Side 5}

Shape 4
● Shape Type: Cone
● Dimensions = {R1 = 0, R2 = 1, H = 2}
● Location= {-0.579, 0.406, 1.707}
● Rotation = {θ= -35°, Φ= -35°}
● Connected from = {Shape 3 Side 5}
● Connections = {None}

Figure 2. Left: Example individual consisting of each of the four primitive shapes. A base cuboid at the

origin with an attached cylinder and sphere. The cylinder then has an attached cone. Right: Tree

structure of example individual, with the genes of each shape listed.

for the antenna feed and ground assemblies and then builds off of it with new

primitives. In its current state, the algorithm is designed to focus on the construction

of single-feed dipole-shaped antennas. As such, it is required that exactly two

primitives be placed on separate sides of the starting cube in all evolved designs, with

one primitive to be attached to the antenna feed line and the other to the ground.

To prevent potential antenna performance issues caused by shorting across the feed

point, a collision detection algorithm utilizing the open-source Flexible Collision

Library software package was implemented [45]. In this algorithm, a bounding volume

is created that encloses each primitive that makes up an individual. Each time a new

primitive is added or the genes of an existing primitive are changed, the algorithm

disallows any operations that cause overlap between primitives that are electrically

connected to opposite sides of the feed point. It is acknowledged that universally

disallowing shorting limits the potential antenna designs that the algorithm may

create; however, this is suitable for the single-feed dipole-like cases that are the focus

of this report. Future work will incorporate more complex logic to allow for designs

where the feed and ground are electrically connected, such as loop dipoles or some

log-periodic dipole arrays.

B. Creating Antennas in XF

Once the tree describing an individual is created as a dictionary, it is converted to a

model in XFdtd through the program’s scripting API. The algorithm allows for the

material properties of the antenna designs to be evolved; however, all studies

presented in this report defined the primitives to be hollow and made from perfect

electrical conductor material. Before XFdtd simulation and fitness evaluation, the
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starting cube is removed and replaced with the antenna feed. The algorithm allows for

single-frequency or broadband-frequency designs. For this work, the single-frequency

runs simulated the response at 300MHz, while the broadband runs used 37 different

frequencies of equal steps from 200MHz to 800MHz. The antenna response was

simulated at 5◦ increments of the azimuth-zenith coordinates. The increment size can

be adjusted as needed for specific applications. The gain of an antenna is a measure of

how efficiently it converts received radio waves from a given direction into power.

XFdtd calculates the far-zone realized gain (hereafter referred to as simply “gain”) of

an antenna at a specific (θ, ϕ) coordinate using Eq. 1 [46]:

GR =
2πr2|Ẽ(θ, ϕ)|2

ηPM
. (1)

Here, GR is the realized gain [47] of the antenna in a specific direction in dBi. Ẽ(θ, ϕ)

is the complex electric field incident on the antenna from the (θ, ϕ) direction, η is the

wave impedance in the medium (377Ω in free space), r is the distance between the

power source and the sensors in the simulation (1m), and PM is the power accepted

by the antenna. The gain is equivalent to the directivity multiplied by the antenna’s

radiation efficiency.

C. Fitness Function Calculation

Once an individual is simulated in XFdtd, fitness functions are used to compare the

resulting gain pattern to the desired goal. Two fitness functions were developed and

tested during this analysis: Euclidean distance and directional gain, which are

described in detail in Section III.

D. Parent Selection

This analysis used tournament selection as the sole selection method. In tournament

selection, a small subset of the population is chosen at random, and the individual with

the highest fitness score in the subset is selected as a parent [48, 49, 50, 51]. We used a

tournament size of 7% of the population or 8 individuals for a population of 120.

E. Genetic Operators

This section describes the three main genetic operators that were used to build the

next generation: mutation, crossover, and injection.

Mutation alters one component of a single parent individual to produce an offspring.

Due to the complexity of combining shapes into individuals, two different types of

mutation were implemented: standard mutation, where a single gene is altered, and

regenerative mutation, where an entire component shape is altered. In standard

mutation, a single dimension, rotation, or location gene of a single shape is altered by
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generating a value from a Gaussian distribution centered on the original value, where

the standard deviation is a predefined percentage of the total range of values. While

standard mutation makes minor changes to individuals, regenerative mutation allows

larger changes to occur. There are four types of regenerative mutation: grow, prune,

replacement, and side switch. For grow mutation, an empty side of one shape on the

individual is selected, and a new shape is generated that connects to that side. In

prune mutation, a shape, and all subsequent connected shapes in the tree, are removed

from the individual. Replacement mutation is the process of exchanging one shape

with another, where the new shape is generated from scratch. During the evolutions

tested in this work, we noticed that some plateaus were the result of a replacement

mutation that rarely performed well, as the new shape would often have geometry very

different from the previous shape. For example, a dipole that approximates a cone

with similar dimensions will perform better than a cone with a very different geometry.

To ameliorate this, a proportional replacement mutation was developed and added to

the algorithm during the broadband runs, which causes the new shape to have

dimensions that are similar to the shape it is replacing. Finally, side switch mutation

selects a shape and moves it, and all subsequent connected shapes in the tree, to a

different unoccupied surface of the shape to which it was originally connected.

Components of two parents are combined to produce two offspring in gene or branch

crossover. In gene crossover, two parents exchange a single gene of one shape. The

shapes are restricted to be the same type, unless the gene swapped is rotation or

location. In branch crossover, all shapes in one branch of the tree structure are

swapped between the two parents. The algorithm selects a tree depth in each of the

parents and then exchanges the branches off that point. The branch to swap from a

parent is allowed to be empty, which would effectively trim the branch of the other

parents. As with mutation, the algorithm ensures that the shape is still valid and that

the constraints are still satisfied.

Injection is the creation of a brand new individual in the next generation. Individuals

made by injection are created using the same method as individuals in the first

generation.

F. Steady-state Evolution

In an improvement to the prior algorithm, this version incorporates an asynchronous

steady-state methodology, where new children are immediately introduced into the

population, instead of having delineated generations [52, 53, 54, 21]. After the initial

population is evaluated, a single new child is created where the type of genetic operator

used is chosen based on a predefined probability. Once the child is created, a random

individual in the population is replaced by the new child. This increases evolutionary

pressure by allowing the genetic information from a child to be immediately available

for the population, which reduces computation time by increasing the rate of

convergence. For comparison with traditional GAs, we define that a new generation
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occurs when new children equal to the population have been created.

Two additional features were added to complement the change to steady-state

evolution. First, we implemented an elitism constraint, where the individual with the

highest fitness is always preserved, meaning that it cannot be removed from the

population. This feature replaced the reproduction operator, used in the previously

reported algorithm, that directly copied a parent to the next generation. Second, a

forced diversity feature was implemented during individual construction, which

requires that there are no duplicate individuals in the population. Prior to

implementing these changes, initial tests of the steady-state algorithm resulted in large

numbers of duplicate individuals and large plateaus that the GA was not able to break

out of due to a lack of diversity in the population.

III. Fitness Function Details

This section details the Euclidean distance and directional gain fitness functions that

were developed for the purposes of this algorithm.

A. Euclidean Distance Fitness Function

The Euclidean distance is used as a metric to determine the similarity between

N -dimensional vectors by summing in quadrature the corresponding elements of each

vector. A Euclidean distance of zero indicates perfect matching between vectors, and

larger values indicate a greater degree of dissimilarity. The general form for Euclidean

distance between vectors n and m, where i is the Nth component is given by

Equation 2:

d(n⃗, m⃗) =

√√√√ N∑
i=1

(ni −mi)2 (2)

To compare an individual’s simulated radiation pattern to the target, complex values

that encode the gain and phase in each sampled direction are calculated in the

vertical, v, and horizontal, h, polarizations separately, as shown in Equations 3 and 4.

Zv = Gv [cos(Φv) + i sin(Φv)] (3)

Zh = Gh [cos(Φh) + i sin(Φh)] (4)

Gv and Gh represent the gain in each polarization direction, and Φv and Φh represent

the phase in each polarization direction.

This complex value is evaluated at each point, i, sampled in θ and ϕ for both the

evolved and target antenna gain patterns, and, accounting for the vertical and
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horizontal polarizations independently and weighting their contributions, the

Euclidean distance-based fitness metric comparing the resulting vectors takes the form

shown in Equation 5.

d =

√√√√( N∑
i=1

[
A |Zvi,evolved − Zvi,target|2 +B |Zhi,evolved − Zhi,target|2

])
(5)

Here, the weights of the contributions from each polarization are represented by A and

B, which are constrained to obey the relationship A+B = 1. For all studies presented

in this report, each polarization was given equal weighting, leading to A = B = 0.5

This metric is the basis for the Euclidean distance fitness function given by Equation 6.

FE =
1

1 + d
(6)

Fitness scores resulting from the Euclidean distance-based metric are bound between

FE = 0 and FE = 1. Scores approaching 1 correspond to evolved antenna designs with

radiation patterns exhibiting a high degree of similarity with the target radiation

pattern. A fitness score of 1 indicates that the evolved antenna’s radiation pattern and

phase perfectly match that of the target.

1. Single-frequency and Broadband Applications

The Euclidean distance fitness function maintains the form presented in Equations 5

and 6 when used to evaluate the similarity between the radiation pattern of an evolved

antenna with that of the target for both single-frequency and broadband cases. The

broadband case requires that the gain and phase values at all sampled points in the

simulated radiation patterns corresponding to each frequency step in the user-defined

band be considered in the fitness score calculation. The single-frequency case simply

considers one radiation pattern at a single specified frequency to derive the fitness

score.

B. Directional Gain Fitness Function

A fitness function was devised to maximize and/or minimize gain in user-specified

angular ranges, directing antenna designs to evolve toward an optimal directional

sensitivity profile. This required separate contributions to the fitness score accounting

for gain values in the angular ranges to be maximized, where larger values must

positively impact the fitness score, and gain values in angular ranges to be minimized,

where larger values must negatively impact the fitness score. The highest scoring

individuals will have the highest average gain in maximization regions and lowest

average gain in minimization regions. An equation was then created to meet these

desired outcomes, which gives the directional gain fitness function, FD, in Equation 7.
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FD = A
[
tanh

(
Ḡ(θmax, ϕmax)

)]
+B

[
1

1 + Ḡ(θmin, ϕmin)

]
(7)

Where Ḡ(θ, ϕ) represents the average gain over all sampled points in the user-specified

angular ranges for the sensitivity to be maximized or minimized, which is denoted by

θmax and ϕmax, and θmin and ϕmin, respectively. The first term accounts for the

maximizing range and is weighted by A, while the second term describes the

minimizing range and is weighted by B. The weights are constrained to A+B = 1.

For all studies using this fitness function in this report, the two terms were evenly

weighted, with A = B = 0.5. This means that maximizing and minimizing gain in the

respective angular regions of interest is given equal importance in the determination of

this metric of fitness.

This fitness function was designed to be bounded between 0 and 1. However, it is

worth noting that to achieve a fitness score of 1, an infinite gain would be required in

the region where gain is to be maximized, which is not possible for physical antennas.

High-performing individuals in the studies presented in Section IV.B of this report

achieved fitness scores nearing 0.9 under this metric.

1. Single-frequency and Broadband Applications

The directional gain fitness function maintains the form presented in Equation 7

applied to both single-frequency and broadband cases. The difference between these

cases lies in the calculation of the average gain at points in the angular range(s) where

maximization or minimization is desired, Ḡ(θmax, ϕmax) and Ḡ(θmin, ϕmin),

respectively. The average gain calculations for the single-frequency case consider gain

values in the specified angular ranges from the simulated antenna radiation pattern at

a single specified frequency. The average gain calculations for the broadband case

account for gain values in the specified angular ranges from the simulated antenna

radiation patterns at each frequency step in the user-specified band. At present,

contributions from the gain at each sampled point in the specified ranges of

maximization and/or minimization, from all frequency steps in the band, are given

equal weight in the calculation of Ḡ(θmax, ϕmax) and Ḡ(θmin, ϕmin). However, future

implementation to allow for increased importance to be placed on performance at

specific in-band frequencies is planned.

IV. Results and Discussion

The GA was tested using both the Euclidean distance and the directional gain fitness

function. For each fitness function, designs were evolved once for a single frequency of

300MHz and once for a broadband case of 200MHz to 800MHz. For the broadband

case, the simulated antenna radiation patterns are evaluated at 37 evenly spaced

discrete frequency steps in the specified band. This section describes the details of the
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evolutions for each of the four tests. For each evolution discussed in this section, the

population size was 120 individuals.

A. Euclidean Distance Target Radiation Pattern Evolution

1. Single Frequency

Figure 3 shows the results for the Euclidean distance evolution at a single frequency of

300MHz. The single-frequency target radiation pattern is that of a simple dipole. The

highest fitness score of each generation is plotted as the solid green line and quartiles

are shown as the other lines. Over 441 generations, the designs evolved to a fitness

score of approximately 0.75. The 3D models corresponding to the most fit individuals

(red) as of generations 0, 25, and 441 are shown in comparison to the model (blue)

that created the target radiation pattern in Figure 4.
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Generation
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Figure 3. The fitness score of each generation evolving toward a single-frequency radiation pattern

using the Euclidean distance fitness function. The maximum fitness score and the three quartiles

are shown.

Figure 5 shows the gain patterns of the most and least fit individuals, represented by

the green and blue lines, respectively, at the start and end of the evolution, along with

the target gain pattern for reference, represented by the pink diamonds. Here, the

gain patterns are represented as two-dimensional slices in the zenith and azimuth

directions. Images of the full three-dimensional gain patterns corresponding to these

slices may be seen in Figure 19 in Appendix II. Figure 6 depicts the phase, in the

zenith and azimuth directions, of the most and least fit evolved antennas at the

beginning and end of the evolution. The phase of the most and least fit individuals is

represented by the green and blue lines, respectively, while the phase of the target is

shown in pink. Additional gain and phase results of the most and least fit individuals

11



(a) Generation 0 (b) Generation 25 (c) Generation 441

Figure 4. Three example models of the best individual of generations 0, 25, and 441 are shown,

illustrating the evolution of the antenna using the Euclidean distance fitness function. The antenna

that produced the target gain pattern is given in blue, and the individual is shown in red.

at an intermediate generation are displayed in Figures 27 and 28 in Appendix III.
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0°

45°

90°

135°

180°

225°

270°

315°

­50

-40

-30

-20

-10

0

Zenith
0°

45°

90°

135°

180°

225°

270°

315°

­3

-2

-1

0

1

2

3

Azimuth

Antenna Gain at 300 MHz

0°

45°

90°

135°

180°

225°

270°

315°

­70
-60

-50

-40

-30

-20

-10

0

Zenith
0°

45°

90°

135°

180°

225°

270°

315°

0.5

1.0

1.5

2.0

Azimuth

Antenna Gain at 300 MHz

Figure 5. The gain patterns of the most and least fit individual as of generations 0 (left) and 441

(right) of the single-frequency evolution towards a target radiation pattern using the Euclidean distance

fitness function. Also overlaid on each is the gain pattern of the target.

Despite the fitness score peaks at approximately 0.7, Figure 5 shows that the most fit

individual has a gain pattern that is closely aligned with the target. The difference

between the evolved antenna’s performance and that of the target lies almost entirely

in the antenna phase near 0◦ as measured in the zenith direction, as evidenced in

Figure 6. This illustrates that a single data point can have a large effect on the fitness

score of an individual.

2. Broadband Target Radiation Pattern Evolution

The broadband target radiation patterns consisted of antenna gain and phase

evaluated at 37 discrete, evenly-spaced frequency steps between 200MHz and
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Generation 0 Generation 441
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Figure 6. The antenna phase in the zenith and azimuth directions of the most and least fit individual

as of generations 0 (left) and 441 (right) of the single-frequency evolution towards a target radiation

pattern using the Euclidean distance-based fitness function. Also overlaid on each is the phase of

the target.

800MHz. The radiation patterns chosen as targets for the broadband evolution

towards a target test case corresponded to the designs of broadband antenna created

through the GENETIS collaboration’s studies on optimization of the biconical

antenna designs [28]. Figure 7 shows the results for the Euclidean distance evolution

for the broadband case. Here, the highest fitness score of each generation is plotted as

the solid green line and quartiles are shown as the other lines. After 216 generations,

the most fit individual created in the evolution achieved a fitness score of

approximately 0.39. The models corresponding to the most fit individuals as of

generations 0, 5, and 216 are shown overlaid with the model corresponding to the

target radiation pattern in Figure 8.

Figure 9 shows the most and least fit individuals, represented by the green and blue

lines, respectively, at the start and end of the evolution at three example frequencies of

200MHz, 516.73MHz, and 800.01MHz, representing the upper, lower, and middle

frequencies in the band. The target gain pattern at each frequency is also shown for

reference and is represented by the pink diamonds. The gain patterns are depicted as

two dimensional slices in the zenith and azimuth directions. Additional images of the

full three-dimensional gain patterns from which these slices were taken may be seen in
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Figure 7. The fitness score of each generation evolving toward a target broadband radiation pattern

using the Euclidean distance fitness function. The maximum fitness score and the three quartiles

are shown.

(a) Generation 0 (b) Generation 5 (c) Generation 216

Figure 8. Three example models of the best individuals from generations 0, 5, and 216 are shown,

illustrating the evolution of broadband antenna using the Euclidean distance fitness function. The

antenna that produced the target gain pattern is given in blue, and the individual is shown in red.

Figures 20-22 in Appendix II.

Figure 10 depicts the phase, in the zenith and azimuth directions, of the most and

least fit evolved antennas at the beginning and end of the evolution. Results are again

shown for the example frequencies of 200MHz, 516.73MHz, and 800.01MHz. The

phase of the most and least fit individuals is represented by the green and blue lines,

respectively, while the phase of the target is shown in pink. Additional gain and phase

results of the most and least fit individuals at an intermediate generation are displayed

in Figures 29 and 30 in Appendix III.
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Figure 9. The gain patterns of the most and least fit individuals in generation 0 (left column) and 216

(right column) of the evolution towards a target broadband radiation pattern using the Euclidean

distance-based fitness function at three example in-band frequencies: 200MHz (first row), 516.73MHz

(second row), and 800.01MHz (third row). The gain pattern of the target is overlaid at the given

frequency. Note the target and most fit lines of the Azimuth chart at 200MHz for generation 216 are

overlapping at the center, since the large gain of the least fit indiviudal is increasing the scale of the

plot.

The run quickly discovered that individuals constructed with two cylinders

approximated the two cones of the design responsible for the target radiation pattern,

as evidenced in generation 5 shown in Figure 8. After over 125 generations, the

algorithm had yet to change the cylinders to cones, because the replacement mutation

was generating new shapes from scratch, resulting in poor fitness individuals. At this
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Figure 10. The antenna phase in the zenith direction of the most and least fit individual in generation

0 (left column) and 216 (right column) of the evolution towards a target broadband radiation pattern

using the Euclidean distance-based fitness function at three example in-band frequencies: 200MHz

(first row), 516.73MHz (second row), and 800.01MHz (third row). Also overlaid on each is the phase

of the target at the given frequency.

point, the proportional replacement mutation operator was added in the middle of the

run, which facilitated the increase in fitness around generation 175 to a design with

two cones. Maximizing the efficiency of the algorithm to avoid plateauing fitness

scores in local maxima continues to be a point of emphasis for future development.
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Figure 11. The antenna phase in the azimuth direction of the most and least fit individual in

generation 0 (left column) and 216 (right column) of the evolution towards a target broadband

radiation pattern using the Euclidean distance-based fitness function at three example in-band

frequencies: 200MHz (first row), 516.73MHz (second row), and 800.01MHz (third row). Also

overlaid on each is the phase of the target at the given frequency.
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B. Directional Gain Fitness Function Results

The next evolution used the directional gain fitness function, which attempted to

maximize and/or minimize gain in the specified angular ranges. For this run, the

angular ranges for gain maximization and minimization were defined to approximately

match the expected sensitivity of a typical dipole antenna. The algorithm targeted

maximizing gain between zenith angles of 45◦ to 135◦ and minimizing between zenith

angles of 0◦ to 45◦ and 135◦ to 180◦. The gain in the azimuthal direction did not

factor into the fitness score for the purpose of this test. Note that phase did not factor

into the directional gain fitness function but could be added based on project or

experimental requirements.

1. Single Frequency

Figure 12 shows the results of the directional gain evolution at a single frequency of

300Mhz. The most fit individual after 142 generations from this evolution achieved a

fitness score of approximately 0.87. Figure 13 shows the most fit individuals as of

generations 0, 5, 95, and 142, demonstrating how the most fit solution changed

throughout the evolution. The individual shown from generation 142 is only slightly

improved over generation 95, and while both designs are viable options, the design

differences highlight the potential of the GA to find unique solutions, even in this

simple case. The evolution will continue to run to explore potential improvements.
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Figure 12. The fitness score of each generation of the single-frequency evolution using the directional

gain fitness function. The maximum fitness score and the three quartiles are shown.

Figure 14 depicts the gain patterns of the most and least fit individuals from the

population at the beginning and end of the single-frequency directional gain evolution.

The most fit individuals are represented by the dashed line and the least fit
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(a) Generation 0 (b) Generation 5 (c) Generation 95 (d) Generation 142

Figure 13. Four example models of the best individual of generations 0, 5, 95, and 142 are shown,

illustrating the evolution of the single-frequency antenna using the directional gain fitness function.

There is no target antenna since the desired gain pattern was not created from an antenna.

individuals by the dotted line. For reference, the zenith angle ranges specified for gain

maximization and minimization are shaded in green and red, respectively. These gain

patterns are presented as two-dimensional slices in the zenith and azimuth direction.

The corresponding three-dimensional gain patterns for the most fit individual in these

generations are available in Figure 23 in Appendix II. An additional set of gain

patterns corresponding to the most and least fit individuals in an intermediate

generation of the evolution is shown in Figure 31 in Appendix III.
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Figure 14. The gain patterns of the most and least fit individual as of generations 0 (left), and 142

(right), of the single-frequency evolution using the directional gain maximization/minimization fitness

function. The regions shaded in green and red represent the angular ranges designated for

maximization and minimization, respectively.

The single-frequency directional gain evolution achieved a maximum fitness score of

approximately 0.88 over 142 generations. The GA quickly ascertained that a

dipole-like design performed well in the single-frequency directional gain test, which is

expected given that the angular ranges for gain to be maximized were chosen to mimic

the gain pattern of a typical dipole antenna. However, in the later generations, the

GA discovered an alternative solution that achieved a slightly higher fitness function
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(0.8791 versus 0.8801)by adding a third primitive cylinder to the side of the dipole

design, as seen in Figure 13. Figure 15 shows the difference in gain patterns between

these two designs. The zenith plot patterns appear to show the response patterns

closely overlapping, with the additional primitive causing slightly larger gain in the

minimization region around 15◦, which would reduce the fitness score. The azimuthal

plot, which is the horizontal slice of the zenith plot and exists entirely in the

maximization region, shows a slight decrease in gain around 90◦ and larger increase in

the maximization region around 270◦. The additional primitive caused a slight

decrease in some areas but a larger increase in others, resulting in a slightly improved

fitness score. This illustrates that despite symmetrical target regions, the algorithm is

not restricted to symmetrical designs. This addition to the typical dipole design serves

as an example of the GA’s potential to discover effective designs that are outside of

those that would traditionally be used, and with additional generations new primitives

could continue to be added to improve the fitness.
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Figure 15. The gain patterns of the most fit individual in generation 95 and generation 142 at

300MHz using the directional fitness function. The regions shaded in green and red represent the

angular ranges designated for maximization and minimization, respectively.

2. Broadband Directional Gain Evolution

Figure 16 shows the results of the broadband directional evolution using the same

frequency range of 200MHz to 800MHz as the broadband Euclidean distance test. The

most fit individual after 229 generations from this evolution achieved a fitness score of

approximately 0.82. Figure 17 shows the most fit individuals as of generations 0, 5,

and 229, demonstrating how the most fit solution changed throughout the evolution.

Figure 18 depicts the gain patterns of the most and least fit individuals from the

population at the beginning and end of the evolution. The most fit individuals are

represented by the dashed line and the least fit individuals by the dotted line. For

reference, the zenith angle ranges specified for gain maximization and minimization
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Figure 16. The fitness score of each generation of the broadband evolution using the directional gain

fitness function. The maximum fitness score and the three quartiles are shown.

(a) Generation 0 (b) Generation 5 (c) Generation 229

Figure 17. Three example models of the best individual of generations 0, 5, and 229 are shown,

illustrating the evolution of broadband antenna using the directional gain fitness function. There is no

target antenna since the desired gain pattern was not created from an antenna.

are shaded in green and red, respectively. These gain patterns are presented as

two-dimensional slices in the zenith and azimuth direction. The corresponding

three-dimensional gain patterns for the most fit individual in these generations are

available in Figures 24–26 in Appendix II. An additional set of gain patterns

corresponding to the most and least fit individuals in an intermediate generation of

the evolution is shown in Figure 32 in Appendix III.

The broadband directional gain evolution achieved a maximum fitness score of

approximately 0.82 in 229 generations. The GA quickly arrived at a design of an
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Figure 18. The gain patterns of the most and least fit individuals in generation 0 (left column) and 229

(right column) of the evolution using the directional gain maximization/minimization fitness function at

three example in-band frequencies: 200MHz (first row), 516.73MHz (second row), and 800.01MHz

(third row). Also overlaid on each is the gain pattern of the target at the given frequency. The regions

shaded in green and red represent the angular ranges designated for maximization and minimization,

respectively.

individual consisting of a cone and a cylinder in a dipole-like configuration, as

depicted in Figure 17, which achieved a fitness score above approximately 0.8. The

design was then fine-tuned over many generations, and incremental gains in fitness

score were achieved. Given additional generations, an improved solution may likely be

found either by additional fine-tuning of the most fit individual’s current design or by

exploring new or additional primitives.
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V. Conclusions

This report presents a GA that can evolve antennas toward desired gain patterns

using combinations of smaller component shapes. Tests showed that the algorithm was

successful at producing antenna designs based on both the closeness in antenna

response to a target antenna gain pattern and an input-desired directional sensitivity.

Using a Euclidean distance fitness function, the algorithm was able to evolve antennas

to match the gain patterns of dipole antenna. Using a directional gain fitness function

the algorithm was able to design antennas to maximize gain between 45◦ to 135◦ and

minimize between 0◦ to 45◦ and 135◦ to 180◦.

A. Future Work

The ultimate goal of this research is to connect antenna design to science outcomes by

using fitness functions integrated with science simulation software. Improving the

effectiveness of the GA in designing complex and unique antennas for specific

functions will also be an area of active development, including allowing other primitive

geometries and adding disconnected shapes to act as reflectors and directors.

Individuals will also have increased complexity by removing the constraint that allows

only one shape per side, by adding additional primitives, and by adding material

optimizations including dielectric or metamaterial antennas, such as those discussed in

References [55, 56, 57, 58, 59]. Improvements to the GA, such as the addition of the

proportional replacement mutation, are in development to improve the speed of

convergence and reduce plateaus. The ability to optimize arrays or to produce arrays

to achieve improved solutions will be added to the GA. Many experiments have unique

or complex design constraints, such as geometry or weight requirements, that will be

incorporated into the algorithm in the future.

As the complexity of the algorithm increases it will be critical to continue to optimize

the speed of the algorithm and efficiency in converging on final solutions. Appendix V

discusses completed and in development improvements to the algorithm by exploring

the speed to reach a solution using the shape evolution previously developed as a test

case. This testing was used to validate the steady-state, elite, and forced diversity

changes to the algorithm. In development is the use of adaptable dynamic genetic

operators, where reinforced learning is used to change how individuals are created

based on the current environment of the run.

More advanced improvements to the algorithm will also be investigated, including

particle swarms and other heuristic methods [60, 61, 62, 63], or neural

networks [64, 65], to improve efficiency. Particle swarms could help reduce the number

of ineffective individuals being generated and help to converge on a solution more

quickly. A neural network could be used to predict the fitness of individuals similar to

previously tested individuals and reduce the computational time needed to simulate

performance and calculate fitness.
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The work presented in this report demonstrates a genetic algorithm that can evolve

antennas with desired gain patterns from primitive shapes. Continued research in this

area will allow for optimization of designs for science outcomes with reduced cost and

scheduling.
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APPENDICES

I. Individual Genes and Genetic Algorithm Parameters

Table 1. Parameters used in Genetic Algorithm

Category Type Parameters

General

Run

Num. Individuals, Num. Generations, Fitness

Function, Target pattern, Steady-state flag,

Forced diversity flag

Individual Max. Tree Depth, Max. Shapes, Shell thickness

XFdtd Frequency range, Frequency step

Shape

Cuboid Shape allowed, Length, Width, and Height Ranges

Sphere Shape allowed, Radius Range

Cylinder Shape allowed, Radius, and Height Range

Cone Shape allowed, Radius 1, Radius 2, and Height Range

Selection

Methods

Tournament Percent of parents, Group Size

Roulette Percent of parents

Rank Percent of parents

Genetic

Operators

Dim. Mutation Percent of children, St. Dev. %

Rotation Mutation Percent of children, St. Dev. %

Location Mutation Percent of children, St. Dev. %

Grow Mutation Percent of children

Prune Mutation Percent of children

Regen. Mutation Percent of children

Side Switch Percent of children

Gene Crossover Percent of children

Branch Crossover Percent of children

Reproduction Percent of children

Injection Percent of children

29



Table 2. Primitive shape genes

Gene Values

Shape Type Cuboid, Cylinder, Cone, Sphere

Dimensions Varies by shape type (See Table 3)

Location Cartesian coordinates of shape midpoint

Rotation θ, ϕ

Connected From Shape built from

Connected To Side that shapes are attached to

Table 3. Dimensions for each shape type

Shape Type Dimension Genes

Cuboid Length, Width, Height

Cylinder Radius, Height

Cone Inner Radius, Outer Radius, Height

Sphere Radius
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II. 3-Dimensional Gain Patterns

(a) Generation 0 (b) Generation 25

(c) Generation 441 (d) Target

Figure 19. The antenna gain pattern of the most fit individual as of generations 0 (a), 25 (b), and

441 (c) of the single-frequency evolution towards a target radiation pattern (d) using the Euclidean

distance-based fitness function.
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(a) Generation 0

200MHz

(b) Generation 5

200MHz

(c) Generation 216

200MHz

(d) Target

200MHz

Figure 20. The antenna gain pattern of the most fit individual as of generations 0 (a), 5 (b), and 216 (c)

of the broadband evolution towards a target radiation pattern (d) using the Euclidean distance-based

fitness function. Shown here are the gain patterns corresponding to a frequency of 200MHz.
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(a) Generation 0

516.73MHz

(b) Generation 5

516.73MHz

(c) Generation 216

516.73MHz

(d) Target

516.73MHz

Figure 21. The antenna gain pattern of the most fit individual as of generations 0 (a), 5 (b), and 216 (c)

of the broadband evolution towards a target radiation pattern (d) using the Euclidean distance-based

fitness function. Shown here are the gain patterns corresponding to a frequency of 516.73MHz.
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(a) Generation 0

800.1MHz

(b) Generation 5

800.1MHz

(c) Generation 216

800.1MHz

(d) Target

800.1MHz

Figure 22. The antenna gain pattern of the most fit individual as of generations 0 (a), 5 (b), and 216 (c)

of the broadband evolution towards a target radiation pattern (d) using the Euclidean distance-based

fitness function. Shown here are the gain patterns corresponding to a frequency of 800.1MHz.
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(a) Generation 0 (b) Generation 5

(c) Generation 95 (d) Generation 142

Figure 23. The antenna gain pattern of the most fit individual as of generations 0 (a), 5 (b), and 95 (c)

of the single-frequency evolution using the directional gain fitness function.
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(a) Generation 0

200MHz

(b) Generation 5

200MHz

(c) Generation 229

200MHz

Figure 24. The antenna gain pattern of the most fit individual as of generations 0 (a), 5 (b), and

229 (c) of the broadband evolution using the directional gain fitness function. Shown here are the gain

patterns corresponding to a frequency of 200MHz.
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(a) Generation 0

516.73MHz

(b) Generation 5

516.73MHz

(c) Generation 229

516.73MHz

Figure 25. The antenna gain pattern of the most fit individual as of generations 0 (a), 5 (b), and

229 (c) of the broadband evolution using the directional gain fitness function. Shown here are the gain

patterns corresponding to a frequency of 516.73MHz.
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(a) Generation 0

800.1MHz

(b) Generation 5

800.1MHz

(c) Generation 229

800.1MHz

Figure 26. The antenna gain pattern of the most fit individual as of generations 0 (a), 5 (b), and

229 (c), of the broadband evolution towards a target radiation pattern (d) using the Euclidean

distance-based fitness function. Shown here are the gain patterns corresponding to a frequency of

800.1MHz.
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III. Additional Results
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Figure 27. The gain patterns of the most and least fit individual in generation 25 of the

single-frequency evolution towards a target radiation pattern using the Euclidean distance-based fitness

function. Also overlaid is the gain pattern of the target.
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Figure 28. The antenna phase in the zenith and azimuth direction of the most and least fit in

generation 25 of the single-frequency evolution towards a target radiation pattern using the Euclidean

distance-based fitness function.
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Generation 5
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Figure 29. The gain patterns of the most and least fit individuals in generation 5 of the evolution

towards a target broadband radiation pattern using the Euclidean distance-based fitness function at

three example in-band frequencies: 200MHz (a), 516.73MHz (b), and 800.1MHz (c). Also overlaid

on each is the gain pattern of the target at the given frequency.
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Figure 30. The antenna phase in the zenith and azimuth direction of the most and least fit individual

in generation 5 of the evolution towards a target broadband radiation pattern using the Euclidean

distance-based fitness function at three example in-band frequencies: 200MHz (a,b), 516.73MHz (c,d),

and 800.1MHz (e,f). Also overlaid on each is the phase of the target.
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Generation 5
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Figure 31. The gain patterns of the most and least fit individual as of generation 5 of the

single-frequency evolution using the directional gain fitness function. The regions shaded in green and

red represent the angular ranges designated for maximization and minimization, respectively.
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Figure 32. The gain patterns of the most and least fit individuals in generation 5 of the evolution using

the directional gain maximization/minimization fitness function at three example in-band frequencies:

200MHz (a), 516.73MHz (b), and 800.1MHz (c). Also overlaid on each is the gain pattern of the

target at the given frequency. The regions shaded in green and red represent the angular ranges

designated for maximization and minimization, respectively.
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IV. Computation Time Per Generation

This section summarizes an analysis conducted on the GA’s computation time. Given

the large number of generations and individuals that may be necessary to evaluate in

order to converge on a solution, it is important to quantify the computation of the

algorithm. The study discussed here analyzed the total computation time per

generation using data collected during evolutions towards a target broadband

radiation pattern using the Euclidean distance fitness function as well as both

single-frequency and broadband evolutions using the directional gain fitness function.

A number of factors are expected to influence the typical computation time of a

generation, including the number of individuals per generation, number of frequency

steps evaluated per individual, overall dimensions and number of shapes making up

the individuals, and the number of simulations able to be conducted in parallel. Each

of the evolutions that the data presented in this section is drawn from contained 120

individuals per generation, and the other parameters are not expected to deviate

significantly between the evolutions towards a target radiation pattern using the

Euclidean distance-based fitness function and the directional gain fitness function,

with the exception of the number of simulations set to run in parallel. This factor was

a user-defined input that was limited by the number of XFdtd software licenses

available. For the data presented in this section, the evolutions using the Euclidean

distance fitness function utilized the capability to simulate 9 individuals in parallel,

while the directional gain evolutions were only capable of simulating 5 individuals in

parallel. As a result, the data presented here is grouped accordingly.

Another consideration to note is that the data presented in this section includes the

time that jobs spent waiting in the queue of the Ohio Supercomputer Center (OSC),

where the antenna simulations were performed. These queue times are an unavoidable

component of the overall computation time, and may be inconsistent due to their

dependence on resource availability.

The vast majority of computation time necessary to create and evaluate an individual

is due to the antenna simulation and queue time. The other stages of the process,

including parent selection, application of genetic operators, writing genetic information

to file, and modeling the individual, are completed on the order of a few seconds. This

is a negligible amount of time relative to the time that it takes to simulate a full

generation worth of individuals, which will be seen in the analysis presented here to be

on the order of approximately 1 hour or more for a typical generation.

Figure 33 displays a histogram of the computation time per generation from data

collected during the evolution towards a target broadband radiation pattern using the

Euclidean distance fitness function. The majority of generations completed within

approximately 100 minutes. The generations seen to take significantly longer may be

attributed to abnormally long queue times due to periods of high traffic at the

supercomputing center.
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Figure 33. Histogram of the per generation computation time observed during the evolution to a target

broadband radiation pattern using the Euclidean distance-based fitness score.
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Figure 34. Histogram of the per generation computation time observed during the evolutions using the

directional gain fitness score, including both single-frequency and broadband evolutions.

Figure 34 shows a histogram of the computation time per generation from data

collected during evolutions using the directional gain fitness function, including data

from both single-frequency and broadband evolutions. Most generations still

completed within approximately 100 minutes, but the increased computation time due

to a lesser amount of parallelization is evident by the increased fraction of generations
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with longer durations. The generations seen to take significantly longer may be still be

attributed to abnormally long queue times due to periods of high traffic at the

supercomputing center.

The results of the analysis presented agree with the expectation that increased

parallelization of the simulation of individuals, known to be the most significant

contributor to the overall computation time of the evolutions, generally leads to a

shorter per generation computation time. Outlier generations significantly longer in

duration were observed but are attributed to unavoidable increases in queue time due

to limited resources at the computing facilities where the simulations were run.

V. Genetic Algorithm Developments and Performance Studies

Various techniques were explored for reducing total computation time required to

converge to a solution by improving the rate of evolution in the GA. These studies

were conducted using the direct dictionary comparison fitness function for a

shape-to-shape evolution to a log periodic antenna geometry presented in the previous

progress report [1].

Figure 35 compares the different steps taken to improve the GA. The baseline result is

the evolution presented in the prior report and is shown in the black line. Since this

result was obtained, a number of improvements were made to algorithm. Specifically,

improvements to the method for recalculating a shape’s midpoint after it or the shape

that it is connected to has been operated upon and the addition of the side switching

regenerative mutation operator significantly increased the probability of individuals

finding improved designs. The version of the generational algorithm with these

improvements implemented is shown in pink. Implementation of the steady-state

algorithm is shown in green and further improves on the rate of convergence. Finally,

the fastest version of the GA, shown in yellow, utilized an additional forced diversity

constraint and elitism. The forced diversity constraint requires that no child produced

be a duplicate of an individual already in the population, and elitism requires that the

most fit individual in the population at the current generation be ineligible to be

selected for removal.

Additional studies were conducted that allowed the genetic operator probabilities to

be changed dynamically in each generation depending on the evolution’s current state.

This method used reinforcement learning [66] to tune the genetic operator

probabilities based on the fitness score growth rate and diversity of the population in

each generation. Results of initial tests of the dynamic operator addition to the GA

are shown in Figure 36, alongside the performance of various versions of the GA

without dynamic operators applied.

The reinforcement learning method for dynamic operators requires model training in

order to discover the optimal operator probabilities. This training may either be

conducted prior to the start of an evolution and imported, or it may be conducted
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Figure 35. Comparisons of the evolutions using the direct dictionary comparison fitness function for a

shape-to-shape evolution to a log periodic antenna geometry [1] using various verisons of the GA. Each

result shown is the mean fitness score per generation over 10 trials. Results tested include the original

generational GA from the previous progress report in yellow (IPNPR), the updated generational GA in

pink (GGA), the steady-state GA in green (SSGA), and the forced diversity steady-state GA in blue

(FDSSGA). The lighter lines are individual test runs, and the darker lines are the mean.

using data from the current evolution itself, allowing the algorithm to attempt to learn

optimal parameters as it progressed. The pretrained result shown in the orange line on

Figure 36 was trained on 200 runs of 250 generations apiece. As seen in Figure 36, it

was found that the pretrained test led to faster evolution; however, the existence of

ample training data may be restrictive in cases where the per generation run time is

long. Further studies of the implementation of dynamic parameter tuning in the GA

are planned, including investigation of the impact of allowing various additional

parameters to dynamically change throughout an evolution, as well as studies of

potential improvements to the reinforcement learning portion of the algorithm.
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Figure 36. Comparisons of the mean fitness score per generation over 10 trial evolutions for various

additions to the GA. Each evolution used the direct dictionary comparison fitness function for a

shape-to-shape evolution to a log periodic antenna geometry, as initially described in a previous

progress report [1]. Versions of the GA tested include the Generational GA (GGA) in pink,

Steady-State GA (SSGA) in green, Steady-State GA with Dynamic Operators without pre-training

(DO-SSGA [Untrained]) in red, Steady-State GA with Dynamic Operators with pre-training (DO-SSGA

[Trained]) in organge, Forced Diversity Steady-State GA (FD-SSGA) in dark blue, and Forced Diversity

Steady-State GA with Elitism (Elite FD-SSGA) in light blue.
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