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Abstract: With the need for real time propagation growing each day, a new way to simulate propagation 

models is needed that is closer to real time while maintaining the same amount of accuracy.  The way to 

get the most accurate results is to use a high fidelity model such as a Finite Difference Time Domain 

(FDTD) model.  This model is limited in space and computational resources.  With the way the algorithm 

is calculated, the computational space can become massive very quickly.  Therefore modeling long 

distances can be impossible.  One way around that is to employ a method called Moving Window Finite 

Difference Time Domain (MWFDTD).  This method only takes into account the area around the pulse.  

However, this is not close to real time due to computational intensity.  One way to make this faster would 

be to make the calculations faster by using a Graphics Processor Unit (GPU).  The GPU can be used to 

speed up the calculations like those found within MWFDTD.    
 

 

1. Introduction 

 

This paper discusses the challenges and techniques involved in converting the MWFDTD algorithm 
from a C++ implementation to an appropriate form for leveraging graphics processor units (GPUs) through 

NVIDIA’s CUDA framework.  The GPU approach employs thousands of threads simultaneously which 
requires special design considerations in order to achieve maximum speed ups.  Previous  work  [1,2,3]  

has  concentrated  on  the  challenges  of  implementing GPU-targeted  software  through  the  use  of  the  
OpenGL  API  or  the  Cg  language.  With  proper understanding  of  CUDA,  it  is  possible  to  reach  

speedups  of  beyond  two  orders  of  magnitude  over traditional  CPUs  and  increase  performance  by  
a  factor  of  two  or  more  over  previous  GPU implementations. 

 
2. Moving Window Finite Difference Time Domain 

 

In order to model long range propagation using traditional 2D FDTD, a vertical plane containing the 
entire irregular terrain profile is projected onto a rectangular grid consisting of evenly spaced grid points 

in the x-y plane.  In addition, time is divided into evenly spaced intervals.  To begin the simulation, an 

electromagnetic pulse is excited at the transmitting antenna and at each time step, the electromagnetic 

fields at each grid point is determined by solving Maxwell’s equations using the second-order finite 
differencing method of Yee[4].  The MWFDTD propagation model is based on a modified FDTD to 

model radio wave propagation[5],[6].   
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One fact of a traditional FDTD method is the propagation radio pulse only occupies a small part of 

the computational space.  MWFDTD takes advantage of this by limiting the computational space to the 
area surrounding the pulse.  The window is only as wide and high as the pulse will be.  All the other space 

in a traditional FDTD calculation could be considered as waste.  This allows longer runs because the 

memory and time limitations are not as great.  As the 
pulse propagates along the terrain, the FDTD mesh is 

moved forward to track the pulse as depicted in Figure  

1.  The window moves at the speed of light to follow 
the pulse that is also moving at the speed of light. 

 

 
The limited computational space does not 

compromise the accuracy of MWFDTD. MWFDTD is 

just as accurate as a regular FDTD calculation.  

Error! Reference source not found. is the path 

loss calculated at a frequency of 410MHz, with a 

FDTD computational domain of 1000 cells wide by 
4600 cells high, a cell spacing of 7.31 cm by 7.31 cm, which corresponds to 10 cells per wavelength at 

410 MHz.  The time step is chosen to be 0.181 ns.  The results were compared with data obtained by ITS.  

The difference between MWFDTD and the measurements is at most 2-3 dB.   
 

3. CUDA GPU 
 

Once  used  for  the  sole  purpose  of  driving  graphical  displays,  the  GPU  has  evolved  into  a 

powerful  computational  device.  The  Tesla  C1060  offers  a  peak  performance  of  933  GFLOPS  and  a 

memory bandwidth of 102 GB/s. This can yield significant performance gains over even a 2.66 GHz Intel 

Core 2 Quad processor which has a theoretical peak performance of 42.56 GFLOPS (using all four cores 

and full SSE2 optimizations) and a memory bandwidth of 10.7 GB/s. The recently released Fermi C2050 and 

C2070 GPUs extend these differences even further with a peak performance of 1.03 Tflops and a memory 

bandwidth of 144 GB/s.  

 

CUDA allows software developers to leverage this power without the need for special computer 
graphics knowledge [7][8].  The GPU is organized into a series of multiprocessors.  Each  of  these 

multiprocessors  contains  a  set  of  stream  processors  and  a  shared  memory  cache  to  facilitate  thread 

cooperation.  
 

CUDA compliant GPUs follow a single instruction multiple thread (SIMT) architecture [9]. In a SIMT 

model, threads are launched simultaneously in groups termed warps. Each thread in the warp can execute 
concurrently as long as they are performing the same instruction on different pieces of data. If threads of a 
warp diverge through a conditional branch, thread execution must be serialized. The greatest speed gains 
are achieved by designing software that minimizes thread divergence within a warp. Algorithms such as 
FDTD perform small amounts of work on large amounts of data, so memory bandwidth tends to be a 
critical factor in application performance. The GPU offers another significant advantage in this area. GPU 
threads can switch contexts nearly instantaneously - without the need to store and restore thread state. This 
fact allows the GPU to hide memory latency by launching thousands of threads simultaneously and 
performing rapid context swapping while waiting for input data.  

  

Figure  1: Moving Window Finite Difference 
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Instantaneous context switching is important for hiding memory latency.  CUDA devices offer 
several types of memory. The three most important types for these purposes are shared, constant, and 
device (global) memory. Shared memory is cached on chip memory with low latency that can be accessed 

cooperatively by a group of threads.  It is particularly useful for implementing user defined caches. Constant 
memory is a cached read-only section of memory currently limited to 64 KB. Device or global memory is 

relatively high latency but is currently available in amounts up to 6 GB per device.  
 

4. Implementation 

 
Functions targeted for the GPU are implemented as kernels in CUDA.  Kernels are very similar to C 

functions except there are certain extensions needed.  This creates a very easy transition for a new user to 

implement any function using a kernel.  The MWFDTD GPU library was written using a number of 
kernels to utilize the GPU.   

 

The GPU kernels were used in the main update equations, boundary conditions and shifting the arrays 
as the window moves.  These are the core FDTD functions within the MWFDTD function.  Each of these 

functions required special consideration with regards to the MWFDTD implementation. 

 

The first step was to convert the update equations from C to CUDA.  This was done by converting the 
update functions to update kernel functions.  The main task here was to eliminate the loop that was used 

within the equations.  The kernel functions will loop over the data available without having the user 

implement a loop.  The rest of the functions were then converted using the same idea.  
 

The next step was to define all of the constant data like material identifiers, material constants, and all 

other constant arrays.   This data will be needed at each time step and each time the window will move.  
There are two methods that CUDA capable GPU can read or write from/to global memory; coalesced and 

uncoalesced.  Coalesced reads or writes allowed the GPU to perform memory transactions of 32, 64, or 

128 bytes simultaneously.  This is the most optimized what to read and write to a GPU due to the fact 

uncoalesced reads have to be serialized which could require between 400 and 600 clock cycles.  The 
MWFDTD model utilized this fact by allocating the update coefficients in constant memory instead of 

global memory.  This is due to the fact these needed to be read at every time step. 

 
The last step was to implement the functions that will move the window.  Each time the window 

moves new data has to be read into the problem, old data deleted, and all arrays have to be shifted.  This 

was done utilizing various aspects of CUDA’s capability of shifting arrays within memory.  The key was 

to minimize the number of reads from main memory.  The reads were done while the results from the 
previous window were being written back to main memory.  Also the number of reads were minimized by 

only reading in the new column of data and shifting the data that was already on the card. 

  

  



 

REMCOM INC.  |  315 South Allen Street, Suite 416  |  State College, PA 16801 USA 
Tel: +1.814.861.1299  |  Fax: +1.814.861.1308  |  www.remcom.com 

 

5. Simulations 
 

To document the speeds up within the new MWFDTD model, simple test cases were developed to 

utilize the new GPU implementation of the model.  Each test case was run first in the released MWFDTD 

2.5 version and then rerun using the same setup file in the new GPU Implementation in 2.6 version.  
Results were then compared.   

Table 1: Tests 

Test  Frequency(MHz) Range(m) Terrain 

Type  
Number of 

Receivers 

1 300 1000 Dry sand 1 

2  300 1000 Dry sand 10846 

3 145 500 Seawater 1 

4 200 1000 Wet earth 1 

 

 

As with other FDTD methods, terrain type impacts scenario set up thus affecting runtimes.  The 

terrain type impacts the number of cells per wavelength.  The more cells present within the window, the 
longer the runtimes.  Dry sand terrain scenarios run with 20 cells per wavelength while sea water terrain 

scenarios run with 100 cells per wavelength.  10 cells per wavelength in the material is needed.  To find 

this value, Equation 1 is used.  Table 2 shows a summary of the cells per wavelength per test. 
 

 

                         
 

  √ 
                           (Equation 1) 

 

 

Table 2: Cells Per Wavelength 

Test  Terrain 

Type  
Cells per 

Wavelength 

1 Dry sand 20 

2  Dry sand 20 

3 Seawater 100 

4 Wet earth 50 

 

 

Each test case consists of a terrain defined by the terrain type at the set range.  The waveform used a 
sinusoid with a carrier frequency defined in the Table 1. The antenna was an isotropic antenna with the 

defined waveform.  There was one transmitter for each project.  The number of receivers for each project 

is defined in the table.   
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Figure  2: Example Project 

 

The computer configuration for the tests is listed in Table 3. 

 

Table 3: Computer Specifications 

 Computer Specification 

Operating System Windows 

CPU Processor  Intel Xeon X5660, 2.80 GHz 

CPU 

CPU Memory 8GB 

GPU NVIDIA C2050 GPU 

GPU Memory 3GB 
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6. Results 

 
Timing for a complete simulation was the benchmark used to evaluate the performance of the new 

MWFDTD model.  Each of the tests described in Section 5 where first run using the CPU implementation 

then run on the same computer using the GPU implementation.   
 

Table 4: Timing Results 

Test  CPU 

Timing(sec) 

GPU 

Timing(sec) 

Speed Ups  

1 8127 212 38.33 

2  7731 137 56.43 

3 84647 1915 44.20 

4 29123 468 62.23 

 

 

 

The speed up comparisons are depicted in Figure 3. 
 

 

Figure  3: Runtime Comparisons 
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Test 3 has the largest speed up due to the material that was used.  This material required a 

denser grid.  This denser grid creates the need for more calculations to be performed each time 

step.  The GPU runtimes for this particular case are closer to the other cases.  This is due to the 

fact the GPU can process the calculations simultaneously thus processing more data in a shorter 

amount of time.  This shows the true power of the GPU. 

 

 

Figure  4: Speed Up Comparisons 

 

  

The speed ups achieved are between 38X – 62X.  The results show the more complex 

problems benefit the most from the new GPU implementation.  The Wet Earth test cases shows 

the highest speed up due to the materials used, the range of the problem, and the frequency of the 

antenna.  The sea water case has a lot of cells in each window which results in a long runtime.  

The majority of the GPU runtimes are very similar as opposed to the CPU runtimes which are all 

over the board.  This is due to the fact the GPU can simultaneously calculate hundreds of grid 

points while the CPU is limited on the amount of calculations it can perform.  This allows most 

if not all of the cells in one vertical column to be calculated at once instead of one or maybe two 

at a time like on the CPU thus resulting in the same runtimes for each column.  Due to the ability 

to only calculate one column at a time, the GPU has enough memory to calculate the denser grids 

like in the wet earth test case in similar time as the less dense grid test case. 

 

MWFDTD was an ideal program to port over to the GPU.  The calculations are able to be 

performed in parallel to completely utilize the power of the GPU.  
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