

Waveguide Device Design Using XFdtd®

Joseph J. Rokita Remcom, Inc.

Remcom Inc.

Outline

- Introduction to XFdtd (XF7)
- Why use simulation?
- How can XF7 help?
- Example: Modeling a waveguide cavity filter
- Results / sensitivity analysis
- Conclusion

What is XFdtd?

CAD modeling tool

- EM simulator
- Data visualization tool
- Technical computing environment

1 thread a	llocated.			
Initializi	ng parameters			
Initializi	ng CUDA for calcu	alation		
XStream FD	TD Accelerator In	nitializing		
XStream FD	TD Accelerator In	nitialized Successful	ly.	
Completing	XStream FDTD Acc	elerator Setup.		
One XStrea	m GPU License pro	ovided. (3 tokens sti	ll required)	
4 XStream	GPU(s) successful	lly authenticated.		
		sximum non-convergent	time step wil	.1 be 200000.
* Time and	percent estimate	es are based on the m		of time steps
Complete	Current/Hax	Current/Target	Elapsed	System Sensor Out
0.00%	10 / 200000	0.00 / -40.00	1s /	
0.01%	20 / 200000	0.00 / -40.00	1s / p	ower and Efficiency F
0.014	30 / 200000	0.00 / -40.00	ls /	
0.024	40 / 200000	0.00 / -40.00	ls /	Project Name: remcon
0.034	50 / 200000	0.00 / -40.00	2s /	Simulation: Steady

REMC

	Sensor Output for remo	Elapse	Convergence(dB) Current/Target	Time step Current/Max	ercent omplete
		ls /	0.00 / -40.00	10 / 200000	0.00%
	Efficiency Results for:	1s /	0.00 / -40.00	20 / 200000	0.01%
	Name: remcomsCellPhoneWithResults	ls /	0.00 / -40.00	30 / 200000	0.014
		15 /	0.00 / -40.00	40 / 200000	0.02%
	on: Steady State for 2nd Antenna	2s / 2s /	0.00 / -40.00	50 / 200000 60 / 200000	0.031
	nber: 1	25 /	0.00 / -40.00	70 / 200000	0.044
	aled Values	38 /	0.00 / -40.00	80 / 200000	0.044
	aleu values	35	0.00 / -40.00	90 / 200000	0.05%
		3s /	0.00 / -40.00	100 / 200000	0.054
3.56 GHz		48 /	0.00 / -40.00	110 / 200000	0.05%
0.002499 W	out Power	45 /	0.00 / -40.00	120 / 200000	0.06%
0.000154 W	ed Loss	48 /	0.00 / -40.00	130 / 200000	0.06%
0.0025 W	ailable Power	Ss /	0.00 / -40.00	140 / 200000	0.07%
85.460%	Efficiency	5s /	0.00 / -40.00	150 / 200000	0.08%
		5s / 6s /	0.00 / -40.00	160 / 200000 170 / 200000	0.08%
85.481%	on Efficiency	65 /	0.00 / -40.00	170 / 200000	0.094
0.002137 W	ed Power				$\overline{}$
0.0002089 W	ted Power	00.3			
1.537e-14 W	ted Power in Tissue	29.3	0.00 / -40.00		
0.0002089 W	ted Power in Non-Tissue	20.7	0.00 / -40.00		
0.0002089 W	ted Power Per Electric Material Component	14.7			
1	Scaling Factor	44.7			
•	ocuming i occur				
1	11111				

Why Simulation?

- Reduce cost, time, and waste
 - Cost and lead times for obtaining prototypes
 - Cost and lead times for measurement
 - Rework
 - Material waste
- Simulation allows for rapid iteration
- Simulate real operating conditions
 - Aircraft in flight
 - Implanted medical device
- Advances in computer technology have reduced simulation times by orders of magnitude

XF7 Workflow

- Starting a new project in XF is analogous to asking someone to build a prototype of your design and measure its performance
- You need to provide:
 - Parts list
 - Bill of materials
 - List of measurements to be taken
- The steps presented here represent a suggested workflow, but many of the steps can be performed in a different order.

XF7 Workflow

Define Geometry

• What are the physical structures I want to test?

View / Analyze / Export Results

 VNA for S-Params, chamber for farzone, etc., all within one simulation... make changes and re-simulate

• Modeled using real-life EM properties as well as certain physical properties

Create / Run Simulation

 Simulating like attaching network analyzer (VNA)

Define Excitations and Circuit Components

• How are signals introduced into my system?

Gridding / Meshing

 Discretize physical objects in space so we can simulate using FDTD

Sensors

• What type of measured data do I need and where?

- Full-wave, first-principles code
 - No assumptions
 - Simulate complex objects with high accuracy
- FDTD
 - Time-domain method allows exciting many frequencies with a single simulation
 - Can use a great variety of materials

- Robust CAD import and geometry creation / manipulation
- XACT Accurate Cell Technology[®]
 - A subcellular modeling technique to precisely capture curved surfaces, thin sheets and small gaps.
 - Good conductors
 - Dielectrics
 - Permits larger cell size, meaning less memory footprint, faster simulation

- Built-in iterative project management
 - Can queue multiple projects to simulate automatically
 - Can view results from many projects simultaneously
 - Parameterization allows users to record key settings, sweep variables, and later return to best simulation

- XStream® GPU Acceleration
 - Leverage the power of NVIDIA's CUDA architecture
 - Massively parallelized implementation
 - Speed improvements that are hundreds of times faster than a 64 bit CPU
 - License to employ a single GPU bundled for free with XF7
 - Licenses for additional GPUs available

1 AMD 2216: 7.2 Mcells/s

1 Intel Xeon 5660: 16.7 Mcells/s

8 Intel Xeon 5660: 92.0 Mcells/s

8 Tesla C2070: 3832.2 Mcells/s

Scripting

- Robust scripting engine can allow greater efficiency of design, optimization, further analysis, etc...
- Allows creation and modification of simulations, parameters, and results, so automated iterative design and output post-processing can be done within the software
- XTend Script Library provides custom functionality "out of the box"

- Want bandpass filter for Ka band
- |S11| < -20 dB for f 27.5 GHz to 28.3 GHz
- |S11| > -0.05 dB for f<27 GHz and f>28.8 GHz
- Will design filter device with iris coupling windows and cavities
 - Design parameters include window size of irises and length of cavities
 - Can use equations to get initial design, then optimize to get better result
 - Verify using simulation at each step
- Perform sensitivity analysis to determine performance of device given specified manufacturing tolerances

Click to watch video...

- Feature-based modeling allows changes mid-design
- Device dimensions fully parameterized
 - Enables optimization and sensitivity studies
 - a1-a5: iris widths
 - I1-I4: cavity lengths

- Variable grid and fixed-points allow the mesh to precisely match a real-world device
- A more complicated device could be modeled using XACT mesh

- Waveguide ports were created for input and output
- Active port
 calculates modes
 and "injects"
 energy into the
 simulated device

Equations led to the initial design

|S11| vs. Frequency

 Good start, but optimization needed

 Mode matching resulted in better pass-band performance

- Time-domain code allows for solutions at multiple frequencies with single simulation
- Steady-state E-field in pass-band is transmitted to output port, while stop-band energy is contained

Click to watch video...

Click to watch video...

- Want to know how chosen manufacturing tolerances will affect results
- Since model is fully parameterized, sensitivity analysis is simple
- Scripting can be used to automate the geometry variations, launch simulations, and perform analysis

- Manufacturing method chosen allows for tolerances within 20 μm
- Scripting automated the geometry creation, launched simulations, and analyzed results
- Ran with 2 NVIDIA C2075 GPUs
- 512 simulations required about 8 hrs., 34 min. (about one min. per simulation)
- Plot shows top twenty worstperforming variations from sensitivity analysis (best in blue)
- Can then determine whether the chosen manufacturing technique is acceptable, or if another must be chosen

Conclusion

- XFdtd is a powerful, multi-purpose, full-wave FDTD simulation tool
- Provides tools to ease and speed workflow of design and analysis
- Can model complex structures, such as filters
- Host of features permits advanced analysis such as sensitivity studies

Request more information, a free trial, or a personal demonstration at:

http://www.remcom.com/information-request-form/

Read more about Remcom's products, watch videos and download this presentation at:

www.remcom.com/mtt-ims-2012

Remcom Inc.

315 S. Allen St., Suite 416 • State College, PA 16801 • USA
Tel: 1-814-861-1299 • Fax: 1-814-861-1308 • sales@remcom.com • www.remcom.com
© 2012 Remcom Inc. All rights reserved.