

Time-Based Mobility of RF Systems in Wireless InSite®

New Features in Wireless InSite 4.0

Overview

- Wireless InSite Capabilities
- Wireless Mobility
- Broadband Simulations
- Hybrid EM: Full Wave to Ray Tracing using Huygens surfaces
- Lunar Propagation
- Questions

Overview

- Wireless InSite Capabilities
- Wireless Mobility
- Broadband Simulations
- Hybrid EM: Full Wave to Ray Tracing using Huygens surfaces
- Lunar Propagation
- Questions

Wireless InSite Capabilities

Remcom Products

3D GPU Full-Wave Solver: Antennas, RF, EM Scattering, BioEM, RCS; Enterprise HPC Enabled for NN Datasets

3D GPU EM Ray Casting: Mobile Sensing Scenarios for RADAR and RCS; HPC enabled for NN for Sensing

3D GPU EM Ray Tracing: Mobile platforms for broadband propagation analysis; HPC Enabled for NN Dataset for Comms

Wireless InSite: 3D Wireless Prediction

3D Wireless Prediction Software

- Suite of propagation models and comms post-processing (MIMO/throughput)
- Validated, deterministic models
 - GPU-accelerated, 3D ray-tracing in complex urban and indoor environments
 - 2D (long-range) and real-time alternatives
- 5G/MIMO beamforming, spatial multiplexing, diversity
- Extensions for mmWave, diffuse scatter

Applications

- 5G/6G Coverage (SINR, throughput) in dense urban outdoor, indoor, out-to-in
- WiFi or BT coverage in complex indoor
- Multipath fading, mobility

Digitize RF System analysis

- Replace need for measurement
- Channel Emulation
- Generate synthetic data for ML

Wireless Mobility

Wireless Mobility

Create dynamic scenarios and simulate how movement of devices and vehicles affects multipath, coverage, and wireless

communications

- Mobile platforms model assemblies of objects and transceivers as they move through a scene
- Visualize the multipath within views of the scenario
- Evaluate how time-varying shadowing and fading impact communication link performance
- Plot or view time-based outputs and automatically generate animations
- Generate accurate path data for each timestep

Mobile Platforms

- Position transceivers and geometry relative to one another
- Maintain relative positions as the platform moves through the environment

Waypoints and Platform Properties

In Platform Editor

 Add waypoints graphically by clicking in 2D view

In Mobile Platform Properties

- Edit waypoints
- Define segment style (Linear or Spline)
- Define Constant speed vs. Time-based waypoints
- Define Exit condition (Remain stationary vs. Exit)

Sampling Rate

Study Area Property:

Mobility Platform Time Interval

Platform Tab:

- Displayed Time Interval
 - Per study-area or custom
- Preview Total Timesteps
- Preview Position in Geometry view

Study Area Properties

Short Description:

Propagation Model

Number of Reflections:

x3d_4r0t0d_1s

X3D

Default

Ray Spacing (°): ▼ 0.2500

Plotting Results vs. Time

Result browser offers several options for defining the plot's independent variable:

- Vs. Rx point
- Vs. Time
- Vs. Frequency
- Vs. Tx point

Received Power vs. Time: (Red) with bus; (Blue) without bus

Viewing Results vs. Time

Sequence through time

- Render in geometry view
- Control frame rate

Analyze path interactions in dynamic scene

Multi-Frequency & Broadband Simulations

Multi-Frequency & Broadband Analysis

Multi-frequency definitions: define a single project for multiple bands

- Multi-frequency antennas
- Frequency-based atmospheric effects
- Multi-frequency materials
- Multi-frequency MIMO S-parameters

Optimized frequency-sweep simulation

- Ray-trace once to find paths, then only recalculate field results for each frequency
- **Key benefits**: adjusts antenna gains and material properties for each frequency in the sweep improves accuracy while simplifying setup (single project rather than project for each frequency band) and reducing runtime

Broadband Analyzer Post-Processing Utility

Calculate frequency spectrum, broadband CIR

Multi-Frequency Antenna Patterns

Import multi-frequency antenna gain patterns from full-wave or measured data:

- MIMO antennas, including radiation patterns, and element positions
- Frequency-specific radiation patterns across 1 or more bands
- Codebooks (beamforming weights)
- Multi-port S-parameters (touchstone file)

Includes direct import from XFdtd®; benefits:

- Easy to load, and saves time by automatically setting up MIMO arrays and antenna patterns
- Realistic patterns and tuned beamforming coefficients to match

Antenna Sim in XFdtd®

Antenna Imported Into Wireless InSite

Frequency-Specific Patterns

Atmospheric Absorption

- Define temperature, pressure and humidity
- Wireless InSite incorporates key absorption bands due to oxygen and water vapor resonances
 - Examples: 22, 60 GHz, etc.
- Absorption is defined up to 1 THz, allowing for LOS calculations (direct path only) above mmW

Specific Attenuation as predicted by Wireless InSite's X3D

Multi-Frequency Material Definitions

Material properties can be defined per facet

Database provides ground and wall materials from ITU recommendations and other references

Modeled via electrical & physical properties

- Electrical properties:
 - Permittivity and conductivity
 - Reflection/transmission coefficients; can vary with frequency and angle
- Physical properties:
 - Thickness: half-spaces (ground), finite-thickness (walls) or multilayer materials (e.g. 2-pane glass)
 - · Roughness: specular or diffuse scattering

Analytically include multipath between multiple layers to predict resonances

Example: Concrete (1-100 GHz)

Frequency Sweeps

Define waveform with a frequency sweep

- Start, End, Count
- Start, Increment, Count

Plotting and Viewing Results vs. Frequency

View and Plot results:

- For specific frequencies
- For statistics aggregated over frequency
- vs. frequency

Hybrid EM: Full Wave to Ray-Tracing using Huygens surfaces

Huygens Equivalence Principle & Reciprocity

Christiaan Huygens (1629-1695)

Tangential components of E & H Fields on a closed surface are used to find the power transmitted from (Tx) and/or to (Rx) antenna systems that are modeled inside the respective Huygens surfaces.

Huygens Antenna in Wireless InSite®

- Huygens Principle (1690)
- Huygens Fresnel Principle (1819)
- Lorentz Reciprocity Theorem (1896)
- Stratton & Chu Formulation (1936)

Full wave Near-field to 3D Ray-trace Environment

Capture near-field effects on Huygens surface

Seamless Huygens Package Import

XF Huygens Platform package export & Import into Wireless InSite

- Huygens antenna field files
- Object files with material defined
- Relative positions defined

Can be moved within the InSite scene without losing spatial relationships

Hybrid EM solution allows analysis of chip/device system performance in larger scenario

GPS Signal in Boston

© Geometry view: (Boston 5G with Huggens) − □ ×
File Foil View, Result Select Hell ② ② 図 図 図 図 図 図 図 図 図 図 図 図 図 図 図 図 図
v_J^x
-71.2 dBm
Selection GPS watch 2 lambds (points)

Plane Wave (V/m)	100
Power Density (W/m^2)	13.26
Power Density (dBm/m^2)	41.226
Theta AOA (degrees)	71
Phi AOA (degrees)	341

GPS Signal in Boston

What Time Is It Pose

Walk Hand Back

- Near-field effects of on-body position
- Multipath effects as person moves through environment

Benefits of Huygens Antennas

- Huygen's workflow captures near-field accuracy of XFdtd inside InSite's powerful ray tracer
- On-body/platform antennas simulated in electrically large scenes
- Huygen's workflow decreases the hardware requirements for simulation

Lunar Propagation

Lunar Propagation

- Import Lunar Reconnaissance Orbiter (LRO) Lunar Orbiter Laser Altimeter (LOLA) terrain datasets
- Accurately transform the coordinates of RF mobile systems upon lunar terrain
- Set appropriate defaults to no atmosphere (vacuum) for lunar environments
- Built-in lunar materials database

Importing Lunar Terrain

Additional terrain elevation formats supported:

- TIFF/BigTIFF/GeoTIFF
- JPEG-2000
- PDS/PDS4

View metadata from elevation source

Automatically set GCS Moon 2000 ellipsoid projection, or manually override

Automatically adjust atmospheric defaults for projects based on lunar terrain

Lunar Surface Materials: Regolith & Bedrock

- Lunar regolith materials database
- Based on ITU working document ITU-R [LUNAR_PERMITTIVITY]/3
- Predefined for a range of inputs
 - 189 materials
 - 21 frequencies
 - 3 regolith depths
 - 3 metal composition percentages

Parameter

Frequencies

Values

SATCOM:

• X-Band: 8

WiFi: 2.4, 5.2, 6, 7, 60

L-Band: 1.55, 1.65, 1.7S-Band: 2.0, 2.1, 2.2

4G/5G: 0.7, 2.5, 3.6, 5.2/6, 28

• Ka Band: 18, 19, 20, 28, 29,

Units

GHz

m

% by

weight

Lunar Propagation

- Imported lunar terrain
- Regolith materials from Wireless InSite database
- X3D simulation showing coverage map, delay spread & animated ray paths

Support NASA Lunar Artemis Missions

- Compatible with Mobility and Huygens
- Ongoing work to provide:
 - Lunar material generator
 - Improved 3D ray-tracing

Summary

- Wireless InSite
 - Validated deterministic RF simulation in arbitrary environments
 - Accurate, detailed path data
- Mobility
 - Define motion for configurations of objects and transceivers
 - Time-based results
- Multi-frequency broadband analysis
 - Single project defines broadband scenario
 - Optimized multi-frequency analysis
- Huygens antennas
 - Near-field accuracy of full-wave solver with the ability to run in complex large-scale environments
 - Improved runtime, smaller resource footprint, and frequency-agnostic solution
- Lunar propagation
 - Terrain import and Lunar materials database
 - Optimized and enhanced ray-tracing for lunar environments

Thank You! Questions?

Toll Free: 1-888-773-6266 (US/Canada)

Tel: 1-814-861-1299

Email: sales@remcom.com

www.remcom.com/contact

