Simulation of Beamforming by Massive MIMO Antennas in Dense Urban Environments

Simulation of Beamforming by Massive MIMO Antennas in Dense Urban Environments

This presentation demonstrates a new predictive capability for simulating massive MIMO antennas and beamforming in dense urban propagation environments.  Remcom's unique approach allows us to predict the signal-to-interference-plus-noise ratio (SINR) at specific device locations and the actual physical beams formed using these techniques, including unintentional distortions caused by pilot contamination.

Full Wave Matching Circuit Optimization Shortens Design Iterations

Full Wave Matching Circuit Optimization Shortens Design Iterations

Full wave matching circuit optimization (FW-MCO) is a new technology that combines full wave, 3D EM simulation with circuit optimization into a novel approach for solving an age-old RF problem: determining which component values provide the desired match for a given matching network layout. This article describes the design process using the design of a matching circuit for a GPS-Bluetooth antenna.

Overview of XFdtd's Circuit Element Optimizer

Overview of XFdtd's Circuit Element Optimizer

XF’s Circuit Element Optimizer utilizes full wave analysis to select the component values for a given printed circuit board (PCB) layout. The tool allows design engineers to optimize matching circuit lumped element values directly in the EM layout where the coupling from multiple antennas and the ground return current paths are taken into account. This whitepaper gives an overview of how the Circuit Element Optimizer works and the benefits it provides.

Introduction to FDTD Electromagnetic Simulation for Automotive Radar

Introduction to FDTD Electromagnetic Simulation for Automotive Radar

Electromagnetic simulation has been used by RF engineers for many years to aid the design of automotive radar sensors, but the increasing demands of advanced driver assistance systems (ADAS) are changing the methods used.  This paper introduces FDTD’s advantages for automotive radar circuit and systems level designers, including simulation of very large problems, more efficient memory requirements, and the ability to reveal sources of coupling.

Benefits of Time-Domain Electromagnetic Simulation for Automotive Radar

Benefits of Time-Domain Electromagnetic Simulation for Automotive Radar

This whitepaper demonstrates how XFdtd's time-domain approach enables rapid development by allowing engineers to determine the performance of a fully detailed sensor model installed behind a piece of fascia without needing to build prototypes and run tests in an anechoic chamber. The analysis of a 25 GHz sensor frames the discussion.

Finite-Difference Time-Domain Modeling of Ultra-High Frequency Antennas On and Inside the Carbon Fiber Body of a Solar-Powered Electric Vehicle

Finite-Difference Time-Domain Modeling of Ultra-High Frequency Antennas On and Inside the Carbon Fiber Body of a Solar-Powered Electric Vehicle

In this paper, FDTD simulations are performed on a 900 MHz band antenna inside and outside the carbon fiber body of a solar-powered electric vehicle. Data are analyzed to determine the optimal antenna placement for transmission to a receiving antenna located toward the rear of the solar vehicle.

Comparison of Indoor Propagation Modeling of WiFi Coverage Using Wireless InSite and Measurements

Comparison of Indoor Propagation Modeling of WiFi Coverage Using Wireless InSite and Measurements

This presentation demonstrates how the 3D ray tracing code in Wireless InSite can accurately predict received power coverage even in a multi-room environment containing many walls and different materials types. In order to verify the accuracy of the code, the floor plan of Remcom’s business offices was modeled in the software with a WiFi antenna and a third party tool was used to create a coverage plot of the received power throughout several of the suites.

Accelerating EM Simulations with MPI + GPU: Performance Study and Hardware Comparisons

Accelerating EM Simulations with MPI + GPU: Performance Study and Hardware Comparisons

With XFdtd, there is no limit to the resources you can exploit to solve your EM calculations. This report quantifies the performance profile of XF's GPU and MPI technologies. We demonstrate the pros and cons of different combinations of equipment and techniques, including cost considerations for those researching available hardware.

Path Gain and SAR Analysis of On-Body Antenna Optimized for Hearing Instrument Applications

Path Gain and SAR Analysis of On-Body Antenna Optimized for Hearing Instrument Applications

This presentation describes the simulation of a hearing instrument (HI) device. The design was simulated in the presence of a homogeneous SAM phantom and an anatomically correct, heterogeneous head model. The simulation results illustrate the differences between the head models and highlight the more acceptable results for improved device safety.

Optimized Antenna Design Using GPU Acceleration and Particle Swarm Optimization

Optimized Antenna Design Using GPU Acceleration and Particle Swarm Optimization

This study considers the example of designing a broadband antenna for an unattended ground sensor using XFdtd. To address the challenge of attaining acceptable performance over both dry and wet ground conditions, we use Particle Swarm Optimization (PSO). XStream GPU Acceleration and MPI + GPU technology make this type of sophisticated simulation strategy possible, completing multiple optimizations with hundreds of generations to converge on the best values.

FDTD Simulation of Thin Resistive Sheets

FDTD Simulation of Thin Resistive Sheets

An effective approach is presented for simulation of thin resistive sheets in FDTD. The approach is based on surface impedance and piecewise linear recursive convolution technique. This approach can be combined with a conformal scheme so that it can be applied to deal with an arbitrarily shaped thin sheet. The simulation results for a couple of examples have shown that the approach is robust, stable and quite accurate.

Empirical / Ray-tracing Hybrid Approach for COST 231 Unknown Building Layouts

Empirical / Ray-tracing Hybrid Approach for COST 231 Unknown Building Layouts

Uncertainty in structure geometry is a fundamental limitation of ray-tracing methods when simulating urban propagation.  We present a hybrid approach using ray-tracing methods and empirically derived loss factors to incorporate the effect of unknown interior layouts.  This approach is compared with a more typical empirical implementation to demonstrate the benefits of hybridization.

High Fidelity Modeling of Spatio-Temporally Dense Multi-Radio Scenarios

High Fidelity Modeling of Spatio-Temporally Dense Multi-Radio Scenarios

Heterogeneous, mobile wireless networks are becoming increasingly difficult to validate for operational use.  Presented is an approach to reduce the run-time of these high fidelity simulations by constructing precise results based on adjacent ray-paths from a lower resolution simulation. Speed and accuracy trade-offs are presented for this approach in typical urban scenarios, demonstrating its effectiveness in meeting the growing needs of wireless channel emulation.

Fast Estimate of Thermal Responses of Biological Bodies due to RF Exposure

Fast Estimate of Thermal Responses of Biological Bodies due to RF Exposure

A fast approach is proposed for estimating the thermal responses of biological bodies due to RF exposures. The approach is based on ANN models. The results obtained from the fast approach agree well with those calculated directly from the thermal solver. The advantage is that the approach is fast and is not dependent on the biological body and mesh sizes.